ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2fvexi Unicode version

Theorem mpt2fvexi 5852
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
fmpt2.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
fnmpt2i.2  |-  C  e. 
_V
mpt2fvexi.3  |-  R  e. 
_V
mpt2fvexi.4  |-  S  e. 
_V
Assertion
Ref Expression
mpt2fvexi  |-  ( R F S )  e. 
_V
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    R( x, y)    S( x, y)    F( x, y)

Proof of Theorem mpt2fvexi
StepHypRef Expression
1 fnmpt2i.2 . . 3  |-  C  e. 
_V
21gen2 1379 . 2  |-  A. x A. y  C  e.  _V
3 mpt2fvexi.3 . 2  |-  R  e. 
_V
4 mpt2fvexi.4 . 2  |-  S  e. 
_V
5 fmpt2.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
65mpt2fvex 5849 . 2  |-  ( ( A. x A. y  C  e.  _V  /\  R  e.  _V  /\  S  e. 
_V )  ->  ( R F S )  e. 
_V )
72, 3, 4, 6mp3an 1268 1  |-  ( R F S )  e. 
_V
Colors of variables: wff set class
Syntax hints:   A.wal 1282    = wceq 1284    e. wcel 1433   _Vcvv 2601  (class class class)co 5532    |-> cmpt2 5534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fo 4928  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator