| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpt2fvex | Unicode version | ||
| Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| fmpt2.1 |
|
| Ref | Expression |
|---|---|
| mpt2fvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5535 |
. 2
| |
| 2 | elex 2610 |
. . . . . . . . 9
| |
| 3 | 2 | alimi 1384 |
. . . . . . . 8
|
| 4 | vex 2604 |
. . . . . . . . 9
| |
| 5 | 2ndexg 5815 |
. . . . . . . . 9
| |
| 6 | nfcv 2219 |
. . . . . . . . . 10
| |
| 7 | nfcsb1v 2938 |
. . . . . . . . . . 11
| |
| 8 | 7 | nfel1 2229 |
. . . . . . . . . 10
|
| 9 | csbeq1a 2916 |
. . . . . . . . . . 11
| |
| 10 | 9 | eleq1d 2147 |
. . . . . . . . . 10
|
| 11 | 6, 8, 10 | spcgf 2680 |
. . . . . . . . 9
|
| 12 | 4, 5, 11 | mp2b 8 |
. . . . . . . 8
|
| 13 | 3, 12 | syl 14 |
. . . . . . 7
|
| 14 | 13 | alimi 1384 |
. . . . . 6
|
| 15 | 1stexg 5814 |
. . . . . . 7
| |
| 16 | nfcv 2219 |
. . . . . . . 8
| |
| 17 | nfcsb1v 2938 |
. . . . . . . . 9
| |
| 18 | 17 | nfel1 2229 |
. . . . . . . 8
|
| 19 | csbeq1a 2916 |
. . . . . . . . 9
| |
| 20 | 19 | eleq1d 2147 |
. . . . . . . 8
|
| 21 | 16, 18, 20 | spcgf 2680 |
. . . . . . 7
|
| 22 | 4, 15, 21 | mp2b 8 |
. . . . . 6
|
| 23 | 14, 22 | syl 14 |
. . . . 5
|
| 24 | 23 | alrimiv 1795 |
. . . 4
|
| 25 | 24 | 3ad2ant1 959 |
. . 3
|
| 26 | opexg 3983 |
. . . 4
| |
| 27 | 26 | 3adant1 956 |
. . 3
|
| 28 | fmpt2.1 |
. . . . 5
| |
| 29 | mpt2mptsx 5843 |
. . . . 5
| |
| 30 | 28, 29 | eqtri 2101 |
. . . 4
|
| 31 | 30 | mptfvex 5277 |
. . 3
|
| 32 | 25, 27, 31 | syl2anc 403 |
. 2
|
| 33 | 1, 32 | syl5eqel 2165 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fo 4928 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 |
| This theorem is referenced by: mpt2fvexi 5852 oaexg 6051 omexg 6054 oeiexg 6056 |
| Copyright terms: Public domain | W3C validator |