ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2fvex Unicode version

Theorem mpt2fvex 5849
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypothesis
Ref Expression
fmpt2.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpt2fvex  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  ( R F S )  e.  _V )
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    R( x, y)    S( x, y)    F( x, y)    V( x, y)    W( x, y)    X( x, y)

Proof of Theorem mpt2fvex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ov 5535 . 2  |-  ( R F S )  =  ( F `  <. R ,  S >. )
2 elex 2610 . . . . . . . . 9  |-  ( C  e.  V  ->  C  e.  _V )
32alimi 1384 . . . . . . . 8  |-  ( A. y  C  e.  V  ->  A. y  C  e. 
_V )
4 vex 2604 . . . . . . . . 9  |-  z  e. 
_V
5 2ndexg 5815 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 2nd `  z )  e. 
_V )
6 nfcv 2219 . . . . . . . . . 10  |-  F/_ y
( 2nd `  z
)
7 nfcsb1v 2938 . . . . . . . . . . 11  |-  F/_ y [_ ( 2nd `  z
)  /  y ]_ C
87nfel1 2229 . . . . . . . . . 10  |-  F/ y
[_ ( 2nd `  z
)  /  y ]_ C  e.  _V
9 csbeq1a 2916 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  z
)  ->  C  =  [_ ( 2nd `  z
)  /  y ]_ C )
109eleq1d 2147 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  z
)  ->  ( C  e.  _V  <->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
116, 8, 10spcgf 2680 . . . . . . . . 9  |-  ( ( 2nd `  z )  e.  _V  ->  ( A. y  C  e.  _V  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
124, 5, 11mp2b 8 . . . . . . . 8  |-  ( A. y  C  e.  _V  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
133, 12syl 14 . . . . . . 7  |-  ( A. y  C  e.  V  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
1413alimi 1384 . . . . . 6  |-  ( A. x A. y  C  e.  V  ->  A. x [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
15 1stexg 5814 . . . . . . 7  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
16 nfcv 2219 . . . . . . . 8  |-  F/_ x
( 1st `  z
)
17 nfcsb1v 2938 . . . . . . . . 9  |-  F/_ x [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C
1817nfel1 2229 . . . . . . . 8  |-  F/ x [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V
19 csbeq1a 2916 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  [_ ( 2nd `  z )  /  y ]_ C  =  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
2019eleq1d 2147 . . . . . . . 8  |-  ( x  =  ( 1st `  z
)  ->  ( [_ ( 2nd `  z )  /  y ]_ C  e.  _V  <->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
2116, 18, 20spcgf 2680 . . . . . . 7  |-  ( ( 1st `  z )  e.  _V  ->  ( A. x [_ ( 2nd `  z )  /  y ]_ C  e.  _V  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
224, 15, 21mp2b 8 . . . . . 6  |-  ( A. x [_ ( 2nd `  z
)  /  y ]_ C  e.  _V  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
2314, 22syl 14 . . . . 5  |-  ( A. x A. y  C  e.  V  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
2423alrimiv 1795 . . . 4  |-  ( A. x A. y  C  e.  V  ->  A. z [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
25243ad2ant1 959 . . 3  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  A. z [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V )
26 opexg 3983 . . . 4  |-  ( ( R  e.  W  /\  S  e.  X )  -> 
<. R ,  S >.  e. 
_V )
27263adant1 956 . . 3  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  -> 
<. R ,  S >.  e. 
_V )
28 fmpt2.1 . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
29 mpt2mptsx 5843 . . . . 5  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
3028, 29eqtri 2101 . . . 4  |-  F  =  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
3130mptfvex 5277 . . 3  |-  ( ( A. z [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V  /\ 
<. R ,  S >.  e. 
_V )  ->  ( F `  <. R ,  S >. )  e.  _V )
3225, 27, 31syl2anc 403 . 2  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  ( F `  <. R ,  S >. )  e.  _V )
331, 32syl5eqel 2165 1  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  ( R F S )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 919   A.wal 1282    = wceq 1284    e. wcel 1433   _Vcvv 2601   [_csb 2908   {csn 3398   <.cop 3401   U_ciun 3678    |-> cmpt 3839    X. cxp 4361   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534   1stc1st 5785   2ndc2nd 5786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fo 4928  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788
This theorem is referenced by:  mpt2fvexi  5852  oaexg  6051  omexg  6054  oeiexg  6056
  Copyright terms: Public domain W3C validator