| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec2uzf1od | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| frec2uz.1 |
|
| frec2uz.2 |
|
| Ref | Expression |
|---|---|
| frec2uzf1od |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 8360 |
. . . . . . . . 9
| |
| 2 | 1 | mptex 5408 |
. . . . . . . 8
|
| 3 | vex 2604 |
. . . . . . . 8
| |
| 4 | 2, 3 | fvex 5215 |
. . . . . . 7
|
| 5 | 4 | ax-gen 1378 |
. . . . . 6
|
| 6 | frec2uz.1 |
. . . . . 6
| |
| 7 | frecfnom 6009 |
. . . . . 6
| |
| 8 | 5, 6, 7 | sylancr 405 |
. . . . 5
|
| 9 | frec2uz.2 |
. . . . . 6
| |
| 10 | 9 | fneq1i 5013 |
. . . . 5
|
| 11 | 8, 10 | sylibr 132 |
. . . 4
|
| 12 | 6, 9 | frec2uzrand 9407 |
. . . . 5
|
| 13 | eqimss 3051 |
. . . . 5
| |
| 14 | 12, 13 | syl 14 |
. . . 4
|
| 15 | df-f 4926 |
. . . 4
| |
| 16 | 11, 14, 15 | sylanbrc 408 |
. . 3
|
| 17 | 6 | adantr 270 |
. . . . . . . . . . . . . 14
|
| 18 | simpr 108 |
. . . . . . . . . . . . . 14
| |
| 19 | 17, 9, 18 | frec2uzzd 9402 |
. . . . . . . . . . . . 13
|
| 20 | 19 | 3adant3 958 |
. . . . . . . . . . . 12
|
| 21 | 20 | zred 8469 |
. . . . . . . . . . 11
|
| 22 | 21 | ltnrd 7222 |
. . . . . . . . . 10
|
| 23 | 22 | adantr 270 |
. . . . . . . . 9
|
| 24 | simpr 108 |
. . . . . . . . . 10
| |
| 25 | 24 | breq2d 3797 |
. . . . . . . . 9
|
| 26 | 23, 25 | mtbid 629 |
. . . . . . . 8
|
| 27 | 17 | 3adant3 958 |
. . . . . . . . . . 11
|
| 28 | simp2 939 |
. . . . . . . . . . 11
| |
| 29 | simp3 940 |
. . . . . . . . . . 11
| |
| 30 | 27, 9, 28, 29 | frec2uzltd 9405 |
. . . . . . . . . 10
|
| 31 | 30 | con3d 593 |
. . . . . . . . 9
|
| 32 | 31 | adantr 270 |
. . . . . . . 8
|
| 33 | 26, 32 | mpd 13 |
. . . . . . 7
|
| 34 | 24 | breq1d 3795 |
. . . . . . . . 9
|
| 35 | 23, 34 | mtbid 629 |
. . . . . . . 8
|
| 36 | 27, 9, 29, 28 | frec2uzltd 9405 |
. . . . . . . . 9
|
| 37 | 36 | adantr 270 |
. . . . . . . 8
|
| 38 | 35, 37 | mtod 621 |
. . . . . . 7
|
| 39 | nntri3 6098 |
. . . . . . . . 9
| |
| 40 | 39 | 3adant1 956 |
. . . . . . . 8
|
| 41 | 40 | adantr 270 |
. . . . . . 7
|
| 42 | 33, 38, 41 | mpbir2and 885 |
. . . . . 6
|
| 43 | 42 | ex 113 |
. . . . 5
|
| 44 | 43 | 3expb 1139 |
. . . 4
|
| 45 | 44 | ralrimivva 2443 |
. . 3
|
| 46 | dff13 5428 |
. . 3
| |
| 47 | 16, 45, 46 | sylanbrc 408 |
. 2
|
| 48 | dff1o5 5155 |
. 2
| |
| 49 | 47, 12, 48 | sylanbrc 408 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 |
| This theorem is referenced by: frec2uzisod 9409 frecuzrdglem 9413 frecuzrdgfn 9414 frecuzrdgcl 9415 frecuzrdgsuc 9417 uzenom 9418 frecfzennn 9419 frechashgf1o 9421 |
| Copyright terms: Public domain | W3C validator |