| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibcval5 | Unicode version | ||
| Description: Write out the top and
bottom parts of the binomial coefficient
|
| Ref | Expression |
|---|---|
| ibcval5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcval2 9677 |
. . . 4
| |
| 2 | 1 | adantl 271 |
. . 3
|
| 3 | simprl 497 |
. . . . . . . . 9
| |
| 4 | simprr 498 |
. . . . . . . . 9
| |
| 5 | 3, 4 | mulcld 7139 |
. . . . . . . 8
|
| 6 | simpr1 944 |
. . . . . . . . 9
| |
| 7 | simpr2 945 |
. . . . . . . . 9
| |
| 8 | simpr3 946 |
. . . . . . . . 9
| |
| 9 | 6, 7, 8 | mulassd 7142 |
. . . . . . . 8
|
| 10 | simpll 495 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | nn0zd 8467 |
. . . . . . . . . . . 12
|
| 12 | simplr 496 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | nnzd 8468 |
. . . . . . . . . . . 12
|
| 14 | 11, 13 | zsubcld 8474 |
. . . . . . . . . . 11
|
| 15 | 14 | peano2zd 8472 |
. . . . . . . . . 10
|
| 16 | 1red 7134 |
. . . . . . . . . . . 12
| |
| 17 | 12 | nnred 8052 |
. . . . . . . . . . . 12
|
| 18 | 10 | nn0red 8342 |
. . . . . . . . . . . 12
|
| 19 | 12 | nnge1d 8081 |
. . . . . . . . . . . 12
|
| 20 | 16, 17, 18, 19 | lesub2dd 7662 |
. . . . . . . . . . 11
|
| 21 | 14 | zred 8469 |
. . . . . . . . . . . 12
|
| 22 | leaddsub 7542 |
. . . . . . . . . . . 12
| |
| 23 | 21, 16, 18, 22 | syl3anc 1169 |
. . . . . . . . . . 11
|
| 24 | 20, 23 | mpbird 165 |
. . . . . . . . . 10
|
| 25 | eluz2 8625 |
. . . . . . . . . 10
| |
| 26 | 15, 11, 24, 25 | syl3anbrc 1122 |
. . . . . . . . 9
|
| 27 | 26 | adantrr 462 |
. . . . . . . 8
|
| 28 | cnex 7097 |
. . . . . . . . 9
| |
| 29 | 28 | a1i 9 |
. . . . . . . 8
|
| 30 | simprr 498 |
. . . . . . . . 9
| |
| 31 | nnuz 8654 |
. . . . . . . . 9
| |
| 32 | 30, 31 | syl6eleq 2171 |
. . . . . . . 8
|
| 33 | vex 2604 |
. . . . . . . . . 10
| |
| 34 | fvi 5251 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | ax-mp 7 |
. . . . . . . . 9
|
| 36 | eluzelcn 8630 |
. . . . . . . . . 10
| |
| 37 | 36 | adantl 271 |
. . . . . . . . 9
|
| 38 | 35, 37 | syl5eqel 2165 |
. . . . . . . 8
|
| 39 | 5, 9, 27, 29, 32, 38 | iseqsplit 9458 |
. . . . . . 7
|
| 40 | elfzuz3 9042 |
. . . . . . . . . . 11
| |
| 41 | 40 | adantl 271 |
. . . . . . . . . 10
|
| 42 | eluznn 8687 |
. . . . . . . . . 10
| |
| 43 | 12, 41, 42 | syl2anc 403 |
. . . . . . . . 9
|
| 44 | 43 | adantrr 462 |
. . . . . . . 8
|
| 45 | facnn 9654 |
. . . . . . . 8
| |
| 46 | 44, 45 | syl 14 |
. . . . . . 7
|
| 47 | facnn 9654 |
. . . . . . . . 9
| |
| 48 | 30, 47 | syl 14 |
. . . . . . . 8
|
| 49 | 48 | oveq1d 5547 |
. . . . . . 7
|
| 50 | 39, 46, 49 | 3eqtr4d 2123 |
. . . . . 6
|
| 51 | 50 | expr 367 |
. . . . 5
|
| 52 | 10 | faccld 9663 |
. . . . . . . . 9
|
| 53 | 52 | nncnd 8053 |
. . . . . . . 8
|
| 54 | 53 | mulid2d 7137 |
. . . . . . 7
|
| 55 | 43, 45 | syl 14 |
. . . . . . . 8
|
| 56 | 55 | oveq2d 5548 |
. . . . . . 7
|
| 57 | 54, 56 | eqtr3d 2115 |
. . . . . 6
|
| 58 | fveq2 5198 |
. . . . . . . . 9
| |
| 59 | fac0 9655 |
. . . . . . . . 9
| |
| 60 | 58, 59 | syl6eq 2129 |
. . . . . . . 8
|
| 61 | oveq1 5539 |
. . . . . . . . . . 11
| |
| 62 | 0p1e1 8153 |
. . . . . . . . . . 11
| |
| 63 | 61, 62 | syl6eq 2129 |
. . . . . . . . . 10
|
| 64 | iseqeq1 9434 |
. . . . . . . . . 10
| |
| 65 | 63, 64 | syl 14 |
. . . . . . . . 9
|
| 66 | 65 | fveq1d 5200 |
. . . . . . . 8
|
| 67 | 60, 66 | oveq12d 5550 |
. . . . . . 7
|
| 68 | 67 | eqeq2d 2092 |
. . . . . 6
|
| 69 | 57, 68 | syl5ibrcom 155 |
. . . . 5
|
| 70 | fznn0sub 9075 |
. . . . . . 7
| |
| 71 | 70 | adantl 271 |
. . . . . 6
|
| 72 | elnn0 8290 |
. . . . . 6
| |
| 73 | 71, 72 | sylib 120 |
. . . . 5
|
| 74 | 51, 69, 73 | mpjaod 670 |
. . . 4
|
| 75 | 74 | oveq1d 5547 |
. . 3
|
| 76 | 28 | a1i 9 |
. . . . 5
|
| 77 | vex 2604 |
. . . . . . 7
| |
| 78 | fvi 5251 |
. . . . . . 7
| |
| 79 | 77, 78 | ax-mp 7 |
. . . . . 6
|
| 80 | eluzelcn 8630 |
. . . . . . 7
| |
| 81 | 80 | adantl 271 |
. . . . . 6
|
| 82 | 79, 81 | syl5eqel 2165 |
. . . . 5
|
| 83 | mulcl 7100 |
. . . . . 6
| |
| 84 | 83 | adantl 271 |
. . . . 5
|
| 85 | 26, 76, 82, 84 | iseqcl 9443 |
. . . 4
|
| 86 | 12 | nnnn0d 8341 |
. . . . . 6
|
| 87 | 86 | faccld 9663 |
. . . . 5
|
| 88 | 87 | nncnd 8053 |
. . . 4
|
| 89 | 71 | faccld 9663 |
. . . . 5
|
| 90 | 89 | nncnd 8053 |
. . . 4
|
| 91 | 87 | nnap0d 8084 |
. . . 4
|
| 92 | 89 | nnap0d 8084 |
. . . 4
|
| 93 | 85, 88, 90, 91, 92 | divcanap5d 7903 |
. . 3
|
| 94 | 2, 75, 93 | 3eqtrd 2117 |
. 2
|
| 95 | simplr 496 |
. . . . . . 7
| |
| 96 | 95 | nnnn0d 8341 |
. . . . . 6
|
| 97 | 96 | faccld 9663 |
. . . . 5
|
| 98 | 97 | nncnd 8053 |
. . . 4
|
| 99 | 97 | nnap0d 8084 |
. . . 4
|
| 100 | 98, 99 | div0apd 7875 |
. . 3
|
| 101 | mulcl 7100 |
. . . . . 6
| |
| 102 | 101 | adantl 271 |
. . . . 5
|
| 103 | eluzelcn 8630 |
. . . . . . 7
| |
| 104 | 103 | adantl 271 |
. . . . . 6
|
| 105 | 35, 104 | syl5eqel 2165 |
. . . . 5
|
| 106 | 28 | a1i 9 |
. . . . 5
|
| 107 | simpr 108 |
. . . . . 6
| |
| 108 | 107 | mul02d 7496 |
. . . . 5
|
| 109 | 107 | mul01d 7497 |
. . . . 5
|
| 110 | simpr 108 |
. . . . . . . . 9
| |
| 111 | nn0uz 8653 |
. . . . . . . . . . . 12
| |
| 112 | 96, 111 | syl6eleq 2171 |
. . . . . . . . . . 11
|
| 113 | simpll 495 |
. . . . . . . . . . . 12
| |
| 114 | 113 | nn0zd 8467 |
. . . . . . . . . . 11
|
| 115 | elfz5 9037 |
. . . . . . . . . . 11
| |
| 116 | 112, 114, 115 | syl2anc 403 |
. . . . . . . . . 10
|
| 117 | nn0re 8297 |
. . . . . . . . . . . 12
| |
| 118 | 117 | ad2antrr 471 |
. . . . . . . . . . 11
|
| 119 | nnre 8046 |
. . . . . . . . . . . 12
| |
| 120 | 119 | ad2antlr 472 |
. . . . . . . . . . 11
|
| 121 | 118, 120 | subge0d 7635 |
. . . . . . . . . 10
|
| 122 | 116, 121 | bitr4d 189 |
. . . . . . . . 9
|
| 123 | 110, 122 | mtbid 629 |
. . . . . . . 8
|
| 124 | simpl 107 |
. . . . . . . . . . . 12
| |
| 125 | 124 | nn0zd 8467 |
. . . . . . . . . . 11
|
| 126 | simpr 108 |
. . . . . . . . . . . 12
| |
| 127 | 126 | nnzd 8468 |
. . . . . . . . . . 11
|
| 128 | 125, 127 | zsubcld 8474 |
. . . . . . . . . 10
|
| 129 | 128 | adantr 270 |
. . . . . . . . 9
|
| 130 | 0z 8362 |
. . . . . . . . 9
| |
| 131 | zltnle 8397 |
. . . . . . . . 9
| |
| 132 | 129, 130, 131 | sylancl 404 |
. . . . . . . 8
|
| 133 | 123, 132 | mpbird 165 |
. . . . . . 7
|
| 134 | zltp1le 8405 |
. . . . . . . 8
| |
| 135 | 129, 130, 134 | sylancl 404 |
. . . . . . 7
|
| 136 | 133, 135 | mpbid 145 |
. . . . . 6
|
| 137 | nn0ge0 8313 |
. . . . . . 7
| |
| 138 | 137 | ad2antrr 471 |
. . . . . 6
|
| 139 | 0zd 8363 |
. . . . . . 7
| |
| 140 | 129 | peano2zd 8472 |
. . . . . . 7
|
| 141 | elfz 9035 |
. . . . . . 7
| |
| 142 | 139, 140, 114, 141 | syl3anc 1169 |
. . . . . 6
|
| 143 | 136, 138, 142 | mpbir2and 885 |
. . . . 5
|
| 144 | elex 2610 |
. . . . . 6
| |
| 145 | 144 | ad2antrr 471 |
. . . . 5
|
| 146 | 0cn 7111 |
. . . . . 6
| |
| 147 | fvi 5251 |
. . . . . 6
| |
| 148 | 146, 147 | mp1i 10 |
. . . . 5
|
| 149 | 102, 105, 106, 108, 109, 143, 145, 148 | iseqz 9469 |
. . . 4
|
| 150 | 149 | oveq1d 5547 |
. . 3
|
| 151 | nnz 8370 |
. . . . 5
| |
| 152 | bcval3 9678 |
. . . . 5
| |
| 153 | 151, 152 | syl3an2 1203 |
. . . 4
|
| 154 | 153 | 3expa 1138 |
. . 3
|
| 155 | 100, 150, 154 | 3eqtr4rd 2124 |
. 2
|
| 156 | 0zd 8363 |
. . . 4
| |
| 157 | fzdcel 9059 |
. . . 4
| |
| 158 | 127, 156, 125, 157 | syl3anc 1169 |
. . 3
|
| 159 | exmiddc 777 |
. . 3
| |
| 160 | 158, 159 | syl 14 |
. 2
|
| 161 | 94, 155, 160 | mpjaodan 744 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-q 8705 df-fz 9030 df-iseq 9432 df-fac 9653 df-bc 9675 |
| This theorem is referenced by: bcn2 9691 |
| Copyright terms: Public domain | W3C validator |