ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulbinom2 Unicode version

Theorem mulbinom2 9589
Description: The square of a binomial with factor. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
mulbinom2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( C  x.  A )  +  B
) ^ 2 )  =  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) ) )

Proof of Theorem mulbinom2
StepHypRef Expression
1 mulcl 7100 . . . . 5  |-  ( ( C  e.  CC  /\  A  e.  CC )  ->  ( C  x.  A
)  e.  CC )
21ancoms 264 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( C  x.  A
)  e.  CC )
323adant2 957 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  A )  e.  CC )
4 simp2 939 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  B  e.  CC )
5 binom2 9585 . . 3  |-  ( ( ( C  x.  A
)  e.  CC  /\  B  e.  CC )  ->  ( ( ( C  x.  A )  +  B ) ^ 2 )  =  ( ( ( ( C  x.  A ) ^ 2 )  +  ( 2  x.  ( ( C  x.  A )  x.  B ) ) )  +  ( B ^
2 ) ) )
63, 4, 5syl2anc 403 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( C  x.  A )  +  B
) ^ 2 )  =  ( ( ( ( C  x.  A
) ^ 2 )  +  ( 2  x.  ( ( C  x.  A )  x.  B
) ) )  +  ( B ^ 2 ) ) )
7 mulass 7104 . . . . . . 7  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( C  x.  A
)  x.  B )  =  ( C  x.  ( A  x.  B
) ) )
873coml 1145 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( C  x.  A
)  x.  B )  =  ( C  x.  ( A  x.  B
) ) )
98oveq2d 5548 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
2  x.  ( ( C  x.  A )  x.  B ) )  =  ( 2  x.  ( C  x.  ( A  x.  B )
) ) )
10 2cnd 8112 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  2  e.  CC )
11 simp3 940 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
12 mulcl 7100 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
13123adant3 958 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  B )  e.  CC )
1410, 11, 13mulassd 7142 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( 2  x.  C
)  x.  ( A  x.  B ) )  =  ( 2  x.  ( C  x.  ( A  x.  B )
) ) )
159, 14eqtr4d 2116 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
2  x.  ( ( C  x.  A )  x.  B ) )  =  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )
1615oveq2d 5548 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( C  x.  A ) ^ 2 )  +  ( 2  x.  ( ( C  x.  A )  x.  B ) ) )  =  ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) ) )
1716oveq1d 5547 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( ( C  x.  A ) ^
2 )  +  ( 2  x.  ( ( C  x.  A )  x.  B ) ) )  +  ( B ^ 2 ) )  =  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) ) )
186, 17eqtrd 2113 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( C  x.  A )  +  B
) ^ 2 )  =  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 919    = wceq 1284    e. wcel 1433  (class class class)co 5532   CCcc 6979    + caddc 6984    x. cmul 6986   2c2 8089   ^cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator