| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > binom3 | Unicode version | ||
| Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.) |
| Ref | Expression |
|---|---|
| binom3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 8099 |
. . . 4
| |
| 2 | 1 | oveq2i 5543 |
. . 3
|
| 3 | addcl 7098 |
. . . 4
| |
| 4 | 2nn0 8305 |
. . . 4
| |
| 5 | expp1 9483 |
. . . 4
| |
| 6 | 3, 4, 5 | sylancl 404 |
. . 3
|
| 7 | 2, 6 | syl5eq 2125 |
. 2
|
| 8 | sqcl 9537 |
. . . . 5
| |
| 9 | 3, 8 | syl 14 |
. . . 4
|
| 10 | simpl 107 |
. . . 4
| |
| 11 | simpr 108 |
. . . 4
| |
| 12 | 9, 10, 11 | adddid 7143 |
. . 3
|
| 13 | binom2 9585 |
. . . . . 6
| |
| 14 | 13 | oveq1d 5547 |
. . . . 5
|
| 15 | sqcl 9537 |
. . . . . . . 8
| |
| 16 | 10, 15 | syl 14 |
. . . . . . 7
|
| 17 | 2cn 8110 |
. . . . . . . 8
| |
| 18 | mulcl 7100 |
. . . . . . . 8
| |
| 19 | mulcl 7100 |
. . . . . . . 8
| |
| 20 | 17, 18, 19 | sylancr 405 |
. . . . . . 7
|
| 21 | 16, 20 | addcld 7138 |
. . . . . 6
|
| 22 | sqcl 9537 |
. . . . . . 7
| |
| 23 | 11, 22 | syl 14 |
. . . . . 6
|
| 24 | 21, 23, 10 | adddird 7144 |
. . . . 5
|
| 25 | 16, 20, 10 | adddird 7144 |
. . . . . . 7
|
| 26 | 1 | oveq2i 5543 |
. . . . . . . . 9
|
| 27 | expp1 9483 |
. . . . . . . . . 10
| |
| 28 | 10, 4, 27 | sylancl 404 |
. . . . . . . . 9
|
| 29 | 26, 28 | syl5eq 2125 |
. . . . . . . 8
|
| 30 | sqval 9534 |
. . . . . . . . . . . . 13
| |
| 31 | 10, 30 | syl 14 |
. . . . . . . . . . . 12
|
| 32 | 31 | oveq1d 5547 |
. . . . . . . . . . 11
|
| 33 | 10, 10, 11 | mul32d 7261 |
. . . . . . . . . . 11
|
| 34 | 32, 33 | eqtrd 2113 |
. . . . . . . . . 10
|
| 35 | 34 | oveq2d 5548 |
. . . . . . . . 9
|
| 36 | 2cnd 8112 |
. . . . . . . . . 10
| |
| 37 | 36, 18, 10 | mulassd 7142 |
. . . . . . . . 9
|
| 38 | 35, 37 | eqtr4d 2116 |
. . . . . . . 8
|
| 39 | 29, 38 | oveq12d 5550 |
. . . . . . 7
|
| 40 | 25, 39 | eqtr4d 2116 |
. . . . . 6
|
| 41 | 23, 10 | mulcomd 7140 |
. . . . . 6
|
| 42 | 40, 41 | oveq12d 5550 |
. . . . 5
|
| 43 | 14, 24, 42 | 3eqtrd 2117 |
. . . 4
|
| 44 | 13 | oveq1d 5547 |
. . . . 5
|
| 45 | 21, 23, 11 | adddird 7144 |
. . . . 5
|
| 46 | sqval 9534 |
. . . . . . . . . . . . . 14
| |
| 47 | 11, 46 | syl 14 |
. . . . . . . . . . . . 13
|
| 48 | 47 | oveq2d 5548 |
. . . . . . . . . . . 12
|
| 49 | 10, 11, 11 | mulassd 7142 |
. . . . . . . . . . . 12
|
| 50 | 48, 49 | eqtr4d 2116 |
. . . . . . . . . . 11
|
| 51 | 50 | oveq2d 5548 |
. . . . . . . . . 10
|
| 52 | 36, 18, 11 | mulassd 7142 |
. . . . . . . . . 10
|
| 53 | 51, 52 | eqtr4d 2116 |
. . . . . . . . 9
|
| 54 | 53 | oveq2d 5548 |
. . . . . . . 8
|
| 55 | 16, 20, 11 | adddird 7144 |
. . . . . . . 8
|
| 56 | 54, 55 | eqtr4d 2116 |
. . . . . . 7
|
| 57 | 1 | oveq2i 5543 |
. . . . . . . 8
|
| 58 | expp1 9483 |
. . . . . . . . 9
| |
| 59 | 11, 4, 58 | sylancl 404 |
. . . . . . . 8
|
| 60 | 57, 59 | syl5eq 2125 |
. . . . . . 7
|
| 61 | 56, 60 | oveq12d 5550 |
. . . . . 6
|
| 62 | 16, 11 | mulcld 7139 |
. . . . . . 7
|
| 63 | 10, 23 | mulcld 7139 |
. . . . . . . 8
|
| 64 | mulcl 7100 |
. . . . . . . 8
| |
| 65 | 17, 63, 64 | sylancr 405 |
. . . . . . 7
|
| 66 | 3nn0 8306 |
. . . . . . . 8
| |
| 67 | expcl 9494 |
. . . . . . . 8
| |
| 68 | 11, 66, 67 | sylancl 404 |
. . . . . . 7
|
| 69 | 62, 65, 68 | addassd 7141 |
. . . . . 6
|
| 70 | 61, 69 | eqtr3d 2115 |
. . . . 5
|
| 71 | 44, 45, 70 | 3eqtrd 2117 |
. . . 4
|
| 72 | 43, 71 | oveq12d 5550 |
. . 3
|
| 73 | expcl 9494 |
. . . . . 6
| |
| 74 | 10, 66, 73 | sylancl 404 |
. . . . 5
|
| 75 | mulcl 7100 |
. . . . . 6
| |
| 76 | 17, 62, 75 | sylancr 405 |
. . . . 5
|
| 77 | 74, 76 | addcld 7138 |
. . . 4
|
| 78 | 65, 68 | addcld 7138 |
. . . 4
|
| 79 | 77, 63, 62, 78 | add4d 7277 |
. . 3
|
| 80 | 12, 72, 79 | 3eqtrd 2117 |
. 2
|
| 81 | 74, 76, 62 | addassd 7141 |
. . . 4
|
| 82 | 1 | oveq1i 5542 |
. . . . . . 7
|
| 83 | 1cnd 7135 |
. . . . . . . 8
| |
| 84 | 36, 83, 62 | adddird 7144 |
. . . . . . 7
|
| 85 | 82, 84 | syl5eq 2125 |
. . . . . 6
|
| 86 | 62 | mulid2d 7137 |
. . . . . . 7
|
| 87 | 86 | oveq2d 5548 |
. . . . . 6
|
| 88 | 85, 87 | eqtrd 2113 |
. . . . 5
|
| 89 | 88 | oveq2d 5548 |
. . . 4
|
| 90 | 81, 89 | eqtr4d 2116 |
. . 3
|
| 91 | 1p2e3 8166 |
. . . . . . . 8
| |
| 92 | 91 | oveq1i 5542 |
. . . . . . 7
|
| 93 | 83, 36, 63 | adddird 7144 |
. . . . . . 7
|
| 94 | 92, 93 | syl5eqr 2127 |
. . . . . 6
|
| 95 | 63 | mulid2d 7137 |
. . . . . . 7
|
| 96 | 95 | oveq1d 5547 |
. . . . . 6
|
| 97 | 94, 96 | eqtrd 2113 |
. . . . 5
|
| 98 | 97 | oveq1d 5547 |
. . . 4
|
| 99 | 63, 65, 68 | addassd 7141 |
. . . 4
|
| 100 | 98, 99 | eqtr2d 2114 |
. . 3
|
| 101 | 90, 100 | oveq12d 5550 |
. 2
|
| 102 | 7, 80, 101 | 3eqtrd 2117 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-n0 8289 df-z 8352 df-uz 8620 df-iseq 9432 df-iexp 9476 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |