ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulext1 Unicode version

Theorem mulext1 7712
Description: Left extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
mulext1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )

Proof of Theorem mulext1
Dummy variables  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7115 . . 3  |-  ( C  e.  CC  ->  E. u  e.  RR  E. v  e.  RR  C  =  ( u  +  ( _i  x.  v ) ) )
213ad2ant3 961 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. u  e.  RR  E. v  e.  RR  C  =  ( u  +  ( _i  x.  v ) ) )
3 cnre 7115 . . . . . . 7  |-  ( B  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
433ad2ant2 960 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
54ad2antrr 471 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
6 cnre 7115 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
763ad2ant1 959 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
87adantr 270 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
98ad3antrrr 475 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
10 simplrl 501 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  x  e.  RR )
1110recnd 7147 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  x  e.  CC )
12 simprl 497 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  ->  u  e.  RR )
1312ad2antrr 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  u  e.  RR )
1413ad3antrrr 475 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  u  e.  RR )
1514recnd 7147 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  u  e.  CC )
1611, 15mulcld 7139 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
x  x.  u )  e.  CC )
17 simplrr 502 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  y  e.  RR )
1817recnd 7147 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  y  e.  CC )
19 simprr 498 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  ->  v  e.  RR )
2019ad2antrr 471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  v  e.  RR )
2120ad3antrrr 475 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  v  e.  RR )
2221recnd 7147 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  v  e.  CC )
2318, 22mulcld 7139 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
y  x.  v )  e.  CC )
2423negcld 7406 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  -u (
y  x.  v )  e.  CC )
25 simprl 497 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  z  e.  RR )
2625ad3antrrr 475 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  z  e.  RR )
2726recnd 7147 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  z  e.  CC )
2827, 15mulcld 7139 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
z  x.  u )  e.  CC )
29 simprr 498 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  w  e.  RR )
3029ad3antrrr 475 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  w  e.  RR )
3130recnd 7147 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  w  e.  CC )
3231, 22mulcld 7139 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
w  x.  v )  e.  CC )
3332negcld 7406 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  -u (
w  x.  v )  e.  CC )
34 addext 7710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  x.  u )  e.  CC  /\  -u ( y  x.  v
)  e.  CC )  /\  ( ( z  x.  u )  e.  CC  /\  -u (
w  x.  v )  e.  CC ) )  ->  ( ( ( x  x.  u )  +  -u ( y  x.  v ) ) #  ( ( z  x.  u
)  +  -u (
w  x.  v ) )  ->  ( (
x  x.  u ) #  ( z  x.  u
)  \/  -u (
y  x.  v ) #  -u ( w  x.  v
) ) ) )
3516, 24, 28, 33, 34syl22anc 1170 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( x  x.  u )  +  -u ( y  x.  v
) ) #  ( ( z  x.  u )  +  -u ( w  x.  v ) )  -> 
( ( x  x.  u ) #  ( z  x.  u )  \/  -u ( y  x.  v
) #  -u ( w  x.  v ) ) ) )
36 remulext1 7699 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  z  e.  RR  /\  u  e.  RR )  ->  (
( x  x.  u
) #  ( z  x.  u )  ->  x #  z ) )
3710, 26, 14, 36syl3anc 1169 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  x.  u
) #  ( z  x.  u )  ->  x #  z ) )
38 apneg 7711 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  x.  v
)  e.  CC  /\  ( w  x.  v
)  e.  CC )  ->  ( ( y  x.  v ) #  ( w  x.  v )  <->  -u ( y  x.  v
) #  -u ( w  x.  v ) ) )
3923, 32, 38syl2anc 403 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( y  x.  v
) #  ( w  x.  v )  <->  -u ( y  x.  v ) #  -u ( w  x.  v
) ) )
40 remulext1 7699 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR  /\  w  e.  RR  /\  v  e.  RR )  ->  (
( y  x.  v
) #  ( w  x.  v )  ->  y #  w ) )
4117, 30, 21, 40syl3anc 1169 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( y  x.  v
) #  ( w  x.  v )  ->  y #  w ) )
4239, 41sylbird 168 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( -u ( y  x.  v
) #  -u ( w  x.  v )  ->  y #  w ) )
4337, 42orim12d 732 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( x  x.  u ) #  ( z  x.  u )  \/  -u ( y  x.  v
) #  -u ( w  x.  v ) )  -> 
( x #  z  \/  y #  w ) ) )
4435, 43syld 44 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( x  x.  u )  +  -u ( y  x.  v
) ) #  ( ( z  x.  u )  +  -u ( w  x.  v ) )  -> 
( x #  z  \/  y #  w ) ) )
4515, 18mulcld 7139 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
u  x.  y )  e.  CC )
4622, 11mulcld 7139 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
v  x.  x )  e.  CC )
4715, 31mulcld 7139 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
u  x.  w )  e.  CC )
4822, 27mulcld 7139 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
v  x.  z )  e.  CC )
49 addext 7710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( u  x.  y )  e.  CC  /\  ( v  x.  x
)  e.  CC )  /\  ( ( u  x.  w )  e.  CC  /\  ( v  x.  z )  e.  CC ) )  -> 
( ( ( u  x.  y )  +  ( v  x.  x
) ) #  ( ( u  x.  w )  +  ( v  x.  z ) )  -> 
( ( u  x.  y ) #  ( u  x.  w )  \/  ( v  x.  x
) #  ( v  x.  z ) ) ) )
5045, 46, 47, 48, 49syl22anc 1170 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w )  +  ( v  x.  z
) )  ->  (
( u  x.  y
) #  ( u  x.  w )  \/  (
v  x.  x ) #  ( v  x.  z
) ) ) )
51 remulext2 7700 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR  /\  w  e.  RR  /\  u  e.  RR )  ->  (
( u  x.  y
) #  ( u  x.  w )  ->  y #  w ) )
5217, 30, 14, 51syl3anc 1169 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( u  x.  y
) #  ( u  x.  w )  ->  y #  w ) )
53 remulext2 7700 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  z  e.  RR  /\  v  e.  RR )  ->  (
( v  x.  x
) #  ( v  x.  z )  ->  x #  z ) )
5410, 26, 21, 53syl3anc 1169 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( v  x.  x
) #  ( v  x.  z )  ->  x #  z ) )
5552, 54orim12d 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( u  x.  y ) #  ( u  x.  w )  \/  ( v  x.  x
) #  ( v  x.  z ) )  -> 
( y #  w  \/  x #  z ) ) )
5650, 55syld 44 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w )  +  ( v  x.  z
) )  ->  (
y #  w  \/  x #  z ) ) )
57 orcom 679 . . . . . . . . . . . . . 14  |-  ( ( y #  w  \/  x #  z )  <->  ( x #  z  \/  y #  w
) )
5856, 57syl6ib 159 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w )  +  ( v  x.  z
) )  ->  (
x #  z  \/  y #  w ) ) )
5944, 58jaod 669 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( ( x  x.  u )  + 
-u ( y  x.  v ) ) #  ( ( z  x.  u
)  +  -u (
w  x.  v ) )  \/  ( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w
)  +  ( v  x.  z ) ) )  ->  ( x #  z  \/  y #  w
) ) )
60 simpr 108 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
61 simplr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  C  =  ( u  +  (
_i  x.  v )
) )
6261ad3antrrr 475 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  C  =  ( u  +  ( _i  x.  v
) ) )
6360, 62oveq12d 5550 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A  x.  C )  =  ( ( x  +  ( _i  x.  y ) )  x.  ( u  +  ( _i  x.  v ) ) ) )
64 simpllr 500 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  B  =  ( z  +  ( _i  x.  w
) ) )
6564, 62oveq12d 5550 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( B  x.  C )  =  ( ( z  +  ( _i  x.  w ) )  x.  ( u  +  ( _i  x.  v ) ) ) )
6663, 65breq12d 3798 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  <->  ( (
x  +  ( _i  x.  y ) )  x.  ( u  +  ( _i  x.  v
) ) ) #  ( ( z  +  ( _i  x.  w ) )  x.  ( u  +  ( _i  x.  v ) ) ) ) )
67 mulreim 7704 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( u  e.  RR  /\  v  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  x.  (
u  +  ( _i  x.  v ) ) )  =  ( ( ( x  x.  u
)  +  -u (
y  x.  v ) )  +  ( _i  x.  ( ( u  x.  y )  +  ( v  x.  x
) ) ) ) )
6810, 17, 14, 21, 67syl22anc 1170 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  +  ( _i  x.  y ) )  x.  ( u  +  ( _i  x.  v ) ) )  =  ( ( ( x  x.  u )  +  -u ( y  x.  v ) )  +  ( _i  x.  (
( u  x.  y
)  +  ( v  x.  x ) ) ) ) )
69 mulreim 7704 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( u  e.  RR  /\  v  e.  RR ) )  -> 
( ( z  +  ( _i  x.  w
) )  x.  (
u  +  ( _i  x.  v ) ) )  =  ( ( ( z  x.  u
)  +  -u (
w  x.  v ) )  +  ( _i  x.  ( ( u  x.  w )  +  ( v  x.  z
) ) ) ) )
7026, 30, 14, 21, 69syl22anc 1170 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( z  +  ( _i  x.  w ) )  x.  ( u  +  ( _i  x.  v ) ) )  =  ( ( ( z  x.  u )  +  -u ( w  x.  v ) )  +  ( _i  x.  (
( u  x.  w
)  +  ( v  x.  z ) ) ) ) )
7168, 70breq12d 3798 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( x  +  ( _i  x.  y
) )  x.  (
u  +  ( _i  x.  v ) ) ) #  ( ( z  +  ( _i  x.  w ) )  x.  ( u  +  ( _i  x.  v ) ) )  <->  ( (
( x  x.  u
)  +  -u (
y  x.  v ) )  +  ( _i  x.  ( ( u  x.  y )  +  ( v  x.  x
) ) ) ) #  ( ( ( z  x.  u )  + 
-u ( w  x.  v ) )  +  ( _i  x.  (
( u  x.  w
)  +  ( v  x.  z ) ) ) ) ) )
7210, 14remulcld 7149 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
x  x.  u )  e.  RR )
7317, 21remulcld 7149 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
y  x.  v )  e.  RR )
7473renegcld 7484 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  -u (
y  x.  v )  e.  RR )
7572, 74readdcld 7148 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  x.  u
)  +  -u (
y  x.  v ) )  e.  RR )
7614, 17remulcld 7149 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
u  x.  y )  e.  RR )
7721, 10remulcld 7149 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
v  x.  x )  e.  RR )
7876, 77readdcld 7148 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( u  x.  y
)  +  ( v  x.  x ) )  e.  RR )
7926, 14remulcld 7149 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
z  x.  u )  e.  RR )
8030, 21remulcld 7149 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
w  x.  v )  e.  RR )
8180renegcld 7484 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  -u (
w  x.  v )  e.  RR )
8279, 81readdcld 7148 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( z  x.  u
)  +  -u (
w  x.  v ) )  e.  RR )
8314, 30remulcld 7149 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
u  x.  w )  e.  RR )
8421, 26remulcld 7149 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
v  x.  z )  e.  RR )
8583, 84readdcld 7148 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( u  x.  w
)  +  ( v  x.  z ) )  e.  RR )
86 apreim 7703 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  x.  u )  + 
-u ( y  x.  v ) )  e.  RR  /\  ( ( u  x.  y )  +  ( v  x.  x ) )  e.  RR )  /\  (
( ( z  x.  u )  +  -u ( w  x.  v
) )  e.  RR  /\  ( ( u  x.  w )  +  ( v  x.  z ) )  e.  RR ) )  ->  ( (
( ( x  x.  u )  +  -u ( y  x.  v
) )  +  ( _i  x.  ( ( u  x.  y )  +  ( v  x.  x ) ) ) ) #  ( ( ( z  x.  u )  +  -u ( w  x.  v ) )  +  ( _i  x.  (
( u  x.  w
)  +  ( v  x.  z ) ) ) )  <->  ( (
( x  x.  u
)  +  -u (
y  x.  v ) ) #  ( ( z  x.  u )  + 
-u ( w  x.  v ) )  \/  ( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w )  +  ( v  x.  z
) ) ) ) )
8775, 78, 82, 85, 86syl22anc 1170 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( ( x  x.  u )  + 
-u ( y  x.  v ) )  +  ( _i  x.  (
( u  x.  y
)  +  ( v  x.  x ) ) ) ) #  ( ( ( z  x.  u
)  +  -u (
w  x.  v ) )  +  ( _i  x.  ( ( u  x.  w )  +  ( v  x.  z
) ) ) )  <-> 
( ( ( x  x.  u )  + 
-u ( y  x.  v ) ) #  ( ( z  x.  u
)  +  -u (
w  x.  v ) )  \/  ( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w
)  +  ( v  x.  z ) ) ) ) )
8866, 71, 873bitrd 212 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  <->  ( (
( x  x.  u
)  +  -u (
y  x.  v ) ) #  ( ( z  x.  u )  + 
-u ( w  x.  v ) )  \/  ( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w )  +  ( v  x.  z
) ) ) ) )
89 apreim 7703 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) )  <->  ( x #  z  \/  y #  w
) ) )
9010, 17, 26, 30, 89syl22anc 1170 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w
) )  <->  ( x #  z  \/  y #  w
) ) )
9159, 88, 903imtr4d 201 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  (
x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w ) ) ) )
9260, 64breq12d 3798 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  <->  ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) ) ) )
9391, 92sylibrd 167 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
9493ex 113 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  /\  C  =  ( u  +  ( _i  x.  v ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) ) )
9594rexlimdvva 2484 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) ) )
969, 95mpd 13 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
9796ex 113 . . . . . 6  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  ( B  =  ( z  +  ( _i  x.  w
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) ) )
9897rexlimdvva 2484 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  ->  ( E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) ) )
995, 98mpd 13 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
10099ex 113 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  ->  ( C  =  ( u  +  ( _i  x.  v
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) ) )
101100rexlimdvva 2484 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( E. u  e.  RR  E. v  e.  RR  C  =  ( u  +  ( _i  x.  v
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) ) )
1022, 101mpd 13 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349   class class class wbr 3785  (class class class)co 5532   CCcc 6979   RRcr 6980   _ici 6983    + caddc 6984    x. cmul 6986   -ucneg 7280   # cap 7681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682
This theorem is referenced by:  mulext2  7713  mulext  7714  mulap0  7744  apmul1  7876
  Copyright terms: Public domain W3C validator