ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addext Unicode version

Theorem addext 7710
Description: Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5541. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.)
Assertion
Ref Expression
addext  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B ) #  ( C  +  D )  ->  ( A #  C  \/  B #  D ) ) )

Proof of Theorem addext
StepHypRef Expression
1 simpll 495 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  A  e.  CC )
2 simplr 496 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  B  e.  CC )
31, 2addcld 7138 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  +  B
)  e.  CC )
4 simprl 497 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  C  e.  CC )
5 simprr 498 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  D  e.  CC )
64, 5addcld 7138 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  +  D
)  e.  CC )
74, 2addcld 7138 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  +  B
)  e.  CC )
8 apcotr 7707 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC  /\  ( C  +  B
)  e.  CC )  ->  ( ( A  +  B ) #  ( C  +  D )  ->  ( ( A  +  B ) #  ( C  +  B )  \/  ( C  +  D ) #  ( C  +  B ) ) ) )
93, 6, 7, 8syl3anc 1169 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B ) #  ( C  +  D )  ->  (
( A  +  B
) #  ( C  +  B )  \/  ( C  +  D ) #  ( C  +  B
) ) ) )
10 apadd1 7708 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  ( A #  C  <->  ( A  +  B ) #  ( C  +  B ) ) )
111, 4, 2, 10syl3anc 1169 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A #  C  <->  ( A  +  B ) #  ( C  +  B ) ) )
12 apadd2 7709 . . . . 5  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  C  e.  CC )  ->  ( B #  D  <->  ( C  +  B ) #  ( C  +  D ) ) )
132, 5, 4, 12syl3anc 1169 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B #  D  <->  ( C  +  B ) #  ( C  +  D ) ) )
14 apsym 7706 . . . . 5  |-  ( ( ( C  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC )  ->  ( ( C  +  B ) #  ( C  +  D )  <-> 
( C  +  D
) #  ( C  +  B ) ) )
157, 6, 14syl2anc 403 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  +  B ) #  ( C  +  D )  <->  ( C  +  D ) #  ( C  +  B ) ) )
1613, 15bitrd 186 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B #  D  <->  ( C  +  D ) #  ( C  +  B ) ) )
1711, 16orbi12d 739 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A #  C  \/  B #  D )  <->  ( ( A  +  B
) #  ( C  +  B )  \/  ( C  +  D ) #  ( C  +  B
) ) ) )
189, 17sylibrd 167 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B ) #  ( C  +  D )  ->  ( A #  C  \/  B #  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   CCcc 6979    + caddc 6984   # cap 7681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682
This theorem is referenced by:  mulext1  7712  abs00ap  9948  absext  9949
  Copyright terms: Public domain W3C validator