ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ncoprmgcdne1b Unicode version

Theorem ncoprmgcdne1b 10471
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmgcdne1b  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. i  e.  ( ZZ>= `  2 )
( i  ||  A  /\  i  ||  B )  <-> 
( A  gcd  B
)  =/=  1 ) )
Distinct variable groups:    A, i    B, i

Proof of Theorem ncoprmgcdne1b
StepHypRef Expression
1 df-2 8098 . . . . . . 7  |-  2  =  ( 1  +  1 )
2 2re 8109 . . . . . . . . 9  |-  2  e.  RR
32a1i 9 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
2  e.  RR )
4 eluzelz 8628 . . . . . . . . . 10  |-  ( i  e.  ( ZZ>= `  2
)  ->  i  e.  ZZ )
54ad2antlr 472 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  e.  ZZ )
65zred 8469 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  e.  RR )
7 simplll 499 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  A  e.  NN )
8 simpllr 500 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  B  e.  NN )
9 gcdnncl 10359 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
107, 8, 9syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( A  gcd  B
)  e.  NN )
1110nnred 8052 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( A  gcd  B
)  e.  RR )
12 eluzle 8631 . . . . . . . . 9  |-  ( i  e.  ( ZZ>= `  2
)  ->  2  <_  i )
1312ad2antlr 472 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
2  <_  i )
14 simpr 108 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( i  ||  A  /\  i  ||  B ) )
157nnzd 8468 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  A  e.  ZZ )
168nnzd 8468 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  B  e.  ZZ )
17 dvdsgcd 10401 . . . . . . . . . . 11  |-  ( ( i  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  ||  ( A  gcd  B ) ) )
185, 15, 16, 17syl3anc 1169 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( ( i  ||  A  /\  i  ||  B
)  ->  i  ||  ( A  gcd  B ) ) )
1914, 18mpd 13 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  ||  ( A  gcd  B ) )
20 dvdsle 10244 . . . . . . . . . 10  |-  ( ( i  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  -> 
( i  ||  ( A  gcd  B )  -> 
i  <_  ( A  gcd  B ) ) )
215, 10, 20syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( i  ||  ( A  gcd  B )  -> 
i  <_  ( A  gcd  B ) ) )
2219, 21mpd 13 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  <_  ( A  gcd  B ) )
233, 6, 11, 13, 22letrd 7233 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
2  <_  ( A  gcd  B ) )
241, 23syl5eqbrr 3819 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( 1  +  1 )  <_  ( A  gcd  B ) )
25 1nn 8050 . . . . . . . 8  |-  1  e.  NN
2625a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
1  e.  NN )
27 nnltp1le 8411 . . . . . . 7  |-  ( ( 1  e.  NN  /\  ( A  gcd  B )  e.  NN )  -> 
( 1  <  ( A  gcd  B )  <->  ( 1  +  1 )  <_ 
( A  gcd  B
) ) )
2826, 10, 27syl2anc 403 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( 1  <  ( A  gcd  B )  <->  ( 1  +  1 )  <_ 
( A  gcd  B
) ) )
2924, 28mpbird 165 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
1  <  ( A  gcd  B ) )
30 nngt1ne1 8073 . . . . . 6  |-  ( ( A  gcd  B )  e.  NN  ->  (
1  <  ( A  gcd  B )  <->  ( A  gcd  B )  =/=  1
) )
3110, 30syl 14 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( 1  <  ( A  gcd  B )  <->  ( A  gcd  B )  =/=  1
) )
3229, 31mpbid 145 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( A  gcd  B
)  =/=  1 )
3332ex 113 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  (
ZZ>= `  2 ) )  ->  ( ( i 
||  A  /\  i  ||  B )  ->  ( A  gcd  B )  =/=  1 ) )
3433rexlimdva 2477 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. i  e.  ( ZZ>= `  2 )
( i  ||  A  /\  i  ||  B )  ->  ( A  gcd  B )  =/=  1 ) )
359adantr 270 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( A  gcd  B )  e.  NN )
36 simpr 108 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( A  gcd  B )  =/=  1 )
37 eluz2b3 8691 . . . . 5  |-  ( ( A  gcd  B )  e.  ( ZZ>= `  2
)  <->  ( ( A  gcd  B )  e.  NN  /\  ( A  gcd  B )  =/=  1 ) )
3835, 36, 37sylanbrc 408 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( A  gcd  B )  e.  ( ZZ>= ` 
2 ) )
39 simpll 495 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  A  e.  NN )
4039nnzd 8468 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  A  e.  ZZ )
41 simplr 496 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  B  e.  NN )
4241nnzd 8468 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  B  e.  ZZ )
43 gcddvds 10355 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
4440, 42, 43syl2anc 403 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )
45 breq1 3788 . . . . . 6  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  A  <->  ( A  gcd  B )  ||  A ) )
46 breq1 3788 . . . . . 6  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  B  <->  ( A  gcd  B )  ||  B ) )
4745, 46anbi12d 456 . . . . 5  |-  ( i  =  ( A  gcd  B )  ->  ( (
i  ||  A  /\  i  ||  B )  <->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) ) )
4847rspcev 2701 . . . 4  |-  ( ( ( A  gcd  B
)  e.  ( ZZ>= ` 
2 )  /\  (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  E. i  e.  (
ZZ>= `  2 ) ( i  ||  A  /\  i  ||  B ) )
4938, 44, 48syl2anc 403 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  E. i  e.  (
ZZ>= `  2 ) ( i  ||  A  /\  i  ||  B ) )
5049ex 113 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =/=  1  ->  E. i  e.  ( ZZ>=
`  2 ) ( i  ||  A  /\  i  ||  B ) ) )
5134, 50impbid 127 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. i  e.  ( ZZ>= `  2 )
( i  ||  A  /\  i  ||  B )  <-> 
( A  gcd  B
)  =/=  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433    =/= wne 2245   E.wrex 2349   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   RRcr 6980   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154   NNcn 8039   2c2 8089   ZZcz 8351   ZZ>=cuz 8619    || cdvds 10195    gcd cgcd 10338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339
This theorem is referenced by:  ncoprmgcdgt1b  10472
  Copyright terms: Public domain W3C validator