ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprmgcdb Unicode version

Theorem coprmgcdb 10470
Description: Two positive integers are coprime, i.e. the only positive integer that divides both of them is 1, iff their greatest common divisor is 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
coprmgcdb  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A. i  e.  NN  ( ( i 
||  A  /\  i  ||  B )  ->  i  =  1 )  <->  ( A  gcd  B )  =  1 ) )
Distinct variable groups:    A, i    B, i

Proof of Theorem coprmgcdb
StepHypRef Expression
1 nnz 8370 . . . 4  |-  ( A  e.  NN  ->  A  e.  ZZ )
2 nnz 8370 . . . 4  |-  ( B  e.  NN  ->  B  e.  ZZ )
3 gcddvds 10355 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
41, 2, 3syl2an 283 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
5 simpr 108 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )
6 gcdnncl 10359 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
76adantr 270 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( A  gcd  B )  e.  NN )
8 breq1 3788 . . . . . . . 8  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  A  <->  ( A  gcd  B )  ||  A ) )
9 breq1 3788 . . . . . . . 8  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  B  <->  ( A  gcd  B )  ||  B ) )
108, 9anbi12d 456 . . . . . . 7  |-  ( i  =  ( A  gcd  B )  ->  ( (
i  ||  A  /\  i  ||  B )  <->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) ) )
11 eqeq1 2087 . . . . . . 7  |-  ( i  =  ( A  gcd  B )  ->  ( i  =  1  <->  ( A  gcd  B )  =  1 ) )
1210, 11imbi12d 232 . . . . . 6  |-  ( i  =  ( A  gcd  B )  ->  ( (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 )  <->  ( ( ( A  gcd  B ) 
||  A  /\  ( A  gcd  B )  ||  B )  ->  ( A  gcd  B )  =  1 ) ) )
1312rspcv 2697 . . . . 5  |-  ( ( A  gcd  B )  e.  NN  ->  ( A. i  e.  NN  ( ( i  ||  A  /\  i  ||  B
)  ->  i  = 
1 )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  -> 
( A  gcd  B
)  =  1 ) ) )
147, 13syl 14 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( A. i  e.  NN  (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 )  ->  ( (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B )  -> 
( A  gcd  B
)  =  1 ) ) )
155, 14mpid 41 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( A. i  e.  NN  (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 )  ->  ( A  gcd  B )  =  1 ) )
164, 15mpdan 412 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A. i  e.  NN  ( ( i 
||  A  /\  i  ||  B )  ->  i  =  1 )  -> 
( A  gcd  B
)  =  1 ) )
17 simpl 107 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( A  e.  NN  /\  B  e.  NN ) )
1817anim1i 333 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
( A  e.  NN  /\  B  e.  NN )  /\  i  e.  NN ) )
1918ancomd 263 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
i  e.  NN  /\  ( A  e.  NN  /\  B  e.  NN ) ) )
20 3anass 923 . . . . . . 7  |-  ( ( i  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  <->  ( i  e.  NN  /\  ( A  e.  NN  /\  B  e.  NN ) ) )
2119, 20sylibr 132 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
i  e.  NN  /\  A  e.  NN  /\  B  e.  NN ) )
22 nndvdslegcd 10357 . . . . . 6  |-  ( ( i  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  <_  ( A  gcd  B ) ) )
2321, 22syl 14 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  <_  ( A  gcd  B ) ) )
24 breq2 3789 . . . . . . . 8  |-  ( ( A  gcd  B )  =  1  ->  (
i  <_  ( A  gcd  B )  <->  i  <_  1 ) )
2524adantr 270 . . . . . . 7  |-  ( ( ( A  gcd  B
)  =  1  /\  i  e.  NN )  ->  ( i  <_ 
( A  gcd  B
)  <->  i  <_  1
) )
26 nnge1 8062 . . . . . . . . 9  |-  ( i  e.  NN  ->  1  <_  i )
27 nnre 8046 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  i  e.  RR )
28 1red 7134 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  1  e.  RR )
2927, 28letri3d 7226 . . . . . . . . . 10  |-  ( i  e.  NN  ->  (
i  =  1  <->  (
i  <_  1  /\  1  <_  i ) ) )
3029biimprd 156 . . . . . . . . 9  |-  ( i  e.  NN  ->  (
( i  <_  1  /\  1  <_  i )  ->  i  =  1 ) )
3126, 30mpan2d 418 . . . . . . . 8  |-  ( i  e.  NN  ->  (
i  <_  1  ->  i  =  1 ) )
3231adantl 271 . . . . . . 7  |-  ( ( ( A  gcd  B
)  =  1  /\  i  e.  NN )  ->  ( i  <_ 
1  ->  i  = 
1 ) )
3325, 32sylbid 148 . . . . . 6  |-  ( ( ( A  gcd  B
)  =  1  /\  i  e.  NN )  ->  ( i  <_ 
( A  gcd  B
)  ->  i  = 
1 ) )
3433adantll 459 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
i  <_  ( A  gcd  B )  ->  i  =  1 ) )
3523, 34syld 44 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 ) )
3635ralrimiva 2434 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  A. i  e.  NN  ( ( i  ||  A  /\  i  ||  B
)  ->  i  = 
1 ) )
3736ex 113 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  A. i  e.  NN  ( ( i  ||  A  /\  i  ||  B
)  ->  i  = 
1 ) ) )
3816, 37impbid 127 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A. i  e.  NN  ( ( i 
||  A  /\  i  ||  B )  ->  i  =  1 )  <->  ( A  gcd  B )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   A.wral 2348   class class class wbr 3785  (class class class)co 5532   1c1 6982    <_ cle 7154   NNcn 8039   ZZcz 8351    || cdvds 10195    gcd cgcd 10338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339
This theorem is referenced by:  coprmdvds1  10473
  Copyright terms: Public domain W3C validator