| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negfi | Unicode version | ||
| Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.) |
| Ref | Expression |
|---|---|
| negfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 2993 |
. . . . . . . . . 10
| |
| 2 | renegcl 7369 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | syl6 33 |
. . . . . . . . 9
|
| 4 | 3 | imp 122 |
. . . . . . . 8
|
| 5 | 4 | ralrimiva 2434 |
. . . . . . 7
|
| 6 | dmmptg 4838 |
. . . . . . 7
| |
| 7 | 5, 6 | syl 14 |
. . . . . 6
|
| 8 | 7 | eqcomd 2086 |
. . . . 5
|
| 9 | 8 | eleq1d 2147 |
. . . 4
|
| 10 | funmpt 4958 |
. . . . 5
| |
| 11 | fundmfibi 6390 |
. . . . 5
| |
| 12 | 10, 11 | mp1i 10 |
. . . 4
|
| 13 | 9, 12 | bitr4d 189 |
. . 3
|
| 14 | reex 7107 |
. . . . . 6
| |
| 15 | 14 | ssex 3915 |
. . . . 5
|
| 16 | mptexg 5407 |
. . . . 5
| |
| 17 | 15, 16 | syl 14 |
. . . 4
|
| 18 | eqid 2081 |
. . . . . 6
| |
| 19 | 18 | negf1o 7486 |
. . . . 5
|
| 20 | f1of1 5145 |
. . . . 5
| |
| 21 | 19, 20 | syl 14 |
. . . 4
|
| 22 | f1vrnfibi 6394 |
. . . 4
| |
| 23 | 17, 21, 22 | syl2anc 403 |
. . 3
|
| 24 | 1 | imp 122 |
. . . . . . . . . 10
|
| 25 | 2 | adantl 271 |
. . . . . . . . . . 11
|
| 26 | recn 7106 |
. . . . . . . . . . . . . . . . 17
| |
| 27 | 26 | negnegd 7410 |
. . . . . . . . . . . . . . . 16
|
| 28 | 27 | eqcomd 2086 |
. . . . . . . . . . . . . . 15
|
| 29 | 28 | eleq1d 2147 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | biimpcd 157 |
. . . . . . . . . . . . 13
|
| 31 | 30 | adantl 271 |
. . . . . . . . . . . 12
|
| 32 | 31 | imp 122 |
. . . . . . . . . . 11
|
| 33 | 25, 32 | jca 300 |
. . . . . . . . . 10
|
| 34 | 24, 33 | mpdan 412 |
. . . . . . . . 9
|
| 35 | eleq1 2141 |
. . . . . . . . . 10
| |
| 36 | negeq 7301 |
. . . . . . . . . . 11
| |
| 37 | 36 | eleq1d 2147 |
. . . . . . . . . 10
|
| 38 | 35, 37 | anbi12d 456 |
. . . . . . . . 9
|
| 39 | 34, 38 | syl5ibrcom 155 |
. . . . . . . 8
|
| 40 | 39 | rexlimdva 2477 |
. . . . . . 7
|
| 41 | simprr 498 |
. . . . . . . . 9
| |
| 42 | negeq 7301 |
. . . . . . . . . . 11
| |
| 43 | 42 | eqeq2d 2092 |
. . . . . . . . . 10
|
| 44 | 43 | adantl 271 |
. . . . . . . . 9
|
| 45 | recn 7106 |
. . . . . . . . . . 11
| |
| 46 | negneg 7358 |
. . . . . . . . . . . 12
| |
| 47 | 46 | eqcomd 2086 |
. . . . . . . . . . 11
|
| 48 | 45, 47 | syl 14 |
. . . . . . . . . 10
|
| 49 | 48 | ad2antrl 473 |
. . . . . . . . 9
|
| 50 | 41, 44, 49 | rspcedvd 2708 |
. . . . . . . 8
|
| 51 | 50 | ex 113 |
. . . . . . 7
|
| 52 | 40, 51 | impbid 127 |
. . . . . 6
|
| 53 | 52 | abbidv 2196 |
. . . . 5
|
| 54 | 18 | rnmpt 4600 |
. . . . 5
|
| 55 | df-rab 2357 |
. . . . 5
| |
| 56 | 53, 54, 55 | 3eqtr4g 2138 |
. . . 4
|
| 57 | 56 | eleq1d 2147 |
. . 3
|
| 58 | 13, 23, 57 | 3bitrd 212 |
. 2
|
| 59 | 58 | biimpa 290 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-1o 6024 df-er 6129 df-en 6245 df-fin 6247 df-sub 7281 df-neg 7282 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |