| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrexdxy | GIF version | ||
| Description: Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexdya 2401 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
| Ref | Expression |
|---|---|
| nfraldxy.2 | ⊢ Ⅎ𝑦𝜑 |
| nfraldxy.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfraldxy.4 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfrexdxy | ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2354 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | nfraldxy.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcv 2219 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) |
| 5 | nfraldxy.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 6 | 4, 5 | nfeld 2234 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 7 | nfraldxy.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 8 | 6, 7 | nfand 1500 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 9 | 2, 8 | nfexd 1684 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 10 | 1, 9 | nfxfrd 1404 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 Ⅎwnf 1389 ∃wex 1421 ∈ wcel 1433 Ⅎwnfc 2206 ∃wrex 2349 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 |
| This theorem is referenced by: nfrexdya 2401 nfrexxy 2403 nfunid 3608 strcollnft 10779 |
| Copyright terms: Public domain | W3C validator |