ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaddcl Unicode version

Theorem nnaddcl 8059
Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.)
Assertion
Ref Expression
nnaddcl  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  +  B
)  e.  NN )

Proof of Theorem nnaddcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5540 . . . . 5  |-  ( x  =  1  ->  ( A  +  x )  =  ( A  + 
1 ) )
21eleq1d 2147 . . . 4  |-  ( x  =  1  ->  (
( A  +  x
)  e.  NN  <->  ( A  +  1 )  e.  NN ) )
32imbi2d 228 . . 3  |-  ( x  =  1  ->  (
( A  e.  NN  ->  ( A  +  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  +  1 )  e.  NN ) ) )
4 oveq2 5540 . . . . 5  |-  ( x  =  y  ->  ( A  +  x )  =  ( A  +  y ) )
54eleq1d 2147 . . . 4  |-  ( x  =  y  ->  (
( A  +  x
)  e.  NN  <->  ( A  +  y )  e.  NN ) )
65imbi2d 228 . . 3  |-  ( x  =  y  ->  (
( A  e.  NN  ->  ( A  +  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  +  y )  e.  NN ) ) )
7 oveq2 5540 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A  +  x )  =  ( A  +  ( y  +  1 ) ) )
87eleq1d 2147 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( A  +  x
)  e.  NN  <->  ( A  +  ( y  +  1 ) )  e.  NN ) )
98imbi2d 228 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( A  e.  NN  ->  ( A  +  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  +  ( y  +  1 ) )  e.  NN ) ) )
10 oveq2 5540 . . . . 5  |-  ( x  =  B  ->  ( A  +  x )  =  ( A  +  B ) )
1110eleq1d 2147 . . . 4  |-  ( x  =  B  ->  (
( A  +  x
)  e.  NN  <->  ( A  +  B )  e.  NN ) )
1211imbi2d 228 . . 3  |-  ( x  =  B  ->  (
( A  e.  NN  ->  ( A  +  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  +  B
)  e.  NN ) ) )
13 peano2nn 8051 . . 3  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
14 peano2nn 8051 . . . . . 6  |-  ( ( A  +  y )  e.  NN  ->  (
( A  +  y )  +  1 )  e.  NN )
15 nncn 8047 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  CC )
16 nncn 8047 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  CC )
17 ax-1cn 7069 . . . . . . . . 9  |-  1  e.  CC
18 addass 7103 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  CC  /\  1  e.  CC )  ->  (
( A  +  y )  +  1 )  =  ( A  +  ( y  +  1 ) ) )
1917, 18mp3an3 1257 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( ( A  +  y )  +  1 )  =  ( A  +  ( y  +  1 ) ) )
2015, 16, 19syl2an 283 . . . . . . 7  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( A  +  y )  +  1 )  =  ( A  +  ( y  +  1 ) ) )
2120eleq1d 2147 . . . . . 6  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( ( A  +  y )  +  1 )  e.  NN  <->  ( A  +  ( y  +  1 ) )  e.  NN ) )
2214, 21syl5ib 152 . . . . 5  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( A  +  y )  e.  NN  ->  ( A  +  ( y  +  1 ) )  e.  NN ) )
2322expcom 114 . . . 4  |-  ( y  e.  NN  ->  ( A  e.  NN  ->  ( ( A  +  y )  e.  NN  ->  ( A  +  ( y  +  1 ) )  e.  NN ) ) )
2423a2d 26 . . 3  |-  ( y  e.  NN  ->  (
( A  e.  NN  ->  ( A  +  y )  e.  NN )  ->  ( A  e.  NN  ->  ( A  +  ( y  +  1 ) )  e.  NN ) ) )
253, 6, 9, 12, 13, 24nnind 8055 . 2  |-  ( B  e.  NN  ->  ( A  e.  NN  ->  ( A  +  B )  e.  NN ) )
2625impcom 123 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  +  B
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433  (class class class)co 5532   CCcc 6979   1c1 6982    + caddc 6984   NNcn 8039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-addrcl 7073  ax-addass 7078
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-iota 4887  df-fv 4930  df-ov 5535  df-inn 8040
This theorem is referenced by:  nnmulcl  8060  nn2ge  8071  nnaddcld  8086  nnnn0addcl  8318  nn0addcl  8323  9p1e10  8479
  Copyright terms: Public domain W3C validator