| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcl | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) |
| Ref | Expression |
|---|---|
| nnmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5540 |
. . . . 5
| |
| 2 | 1 | eleq1d 2147 |
. . . 4
|
| 3 | 2 | imbi2d 228 |
. . 3
|
| 4 | oveq2 5540 |
. . . . 5
| |
| 5 | 4 | eleq1d 2147 |
. . . 4
|
| 6 | 5 | imbi2d 228 |
. . 3
|
| 7 | oveq2 5540 |
. . . . 5
| |
| 8 | 7 | eleq1d 2147 |
. . . 4
|
| 9 | 8 | imbi2d 228 |
. . 3
|
| 10 | oveq2 5540 |
. . . . 5
| |
| 11 | 10 | eleq1d 2147 |
. . . 4
|
| 12 | 11 | imbi2d 228 |
. . 3
|
| 13 | nncn 8047 |
. . . 4
| |
| 14 | mulid1 7116 |
. . . . . 6
| |
| 15 | 14 | eleq1d 2147 |
. . . . 5
|
| 16 | 15 | biimprd 156 |
. . . 4
|
| 17 | 13, 16 | mpcom 36 |
. . 3
|
| 18 | nnaddcl 8059 |
. . . . . . . 8
| |
| 19 | 18 | ancoms 264 |
. . . . . . 7
|
| 20 | nncn 8047 |
. . . . . . . . 9
| |
| 21 | ax-1cn 7069 |
. . . . . . . . . . 11
| |
| 22 | adddi 7105 |
. . . . . . . . . . 11
| |
| 23 | 21, 22 | mp3an3 1257 |
. . . . . . . . . 10
|
| 24 | 14 | oveq2d 5548 |
. . . . . . . . . . 11
|
| 25 | 24 | adantr 270 |
. . . . . . . . . 10
|
| 26 | 23, 25 | eqtrd 2113 |
. . . . . . . . 9
|
| 27 | 13, 20, 26 | syl2an 283 |
. . . . . . . 8
|
| 28 | 27 | eleq1d 2147 |
. . . . . . 7
|
| 29 | 19, 28 | syl5ibr 154 |
. . . . . 6
|
| 30 | 29 | exp4b 359 |
. . . . 5
|
| 31 | 30 | pm2.43b 51 |
. . . 4
|
| 32 | 31 | a2d 26 |
. . 3
|
| 33 | 3, 6, 9, 12, 17, 32 | nnind 8055 |
. 2
|
| 34 | 33 | impcom 123 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-1rid 7083 ax-cnre 7087 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 df-inn 8040 |
| This theorem is referenced by: nnmulcli 8061 nndivtr 8080 nnmulcld 8087 nn0mulcl 8324 qaddcl 8720 qmulcl 8722 modqmulnn 9344 nnexpcl 9489 nnsqcl 9545 faccl 9662 facdiv 9665 faclbnd3 9670 bcrpcl 9680 lcmgcdlem 10459 lcmgcdnn 10464 |
| Copyright terms: Public domain | W3C validator |