| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnind | Unicode version | ||
| Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 8059 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnind.1 |
|
| nnind.2 |
|
| nnind.3 |
|
| nnind.4 |
|
| nnind.5 |
|
| nnind.6 |
|
| Ref | Expression |
|---|---|
| nnind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 8050 |
. . . . . 6
| |
| 2 | nnind.5 |
. . . . . 6
| |
| 3 | nnind.1 |
. . . . . . 7
| |
| 4 | 3 | elrab 2749 |
. . . . . 6
|
| 5 | 1, 2, 4 | mpbir2an 883 |
. . . . 5
|
| 6 | elrabi 2746 |
. . . . . . 7
| |
| 7 | peano2nn 8051 |
. . . . . . . . . 10
| |
| 8 | 7 | a1d 22 |
. . . . . . . . 9
|
| 9 | nnind.6 |
. . . . . . . . 9
| |
| 10 | 8, 9 | anim12d 328 |
. . . . . . . 8
|
| 11 | nnind.2 |
. . . . . . . . 9
| |
| 12 | 11 | elrab 2749 |
. . . . . . . 8
|
| 13 | nnind.3 |
. . . . . . . . 9
| |
| 14 | 13 | elrab 2749 |
. . . . . . . 8
|
| 15 | 10, 12, 14 | 3imtr4g 203 |
. . . . . . 7
|
| 16 | 6, 15 | mpcom 36 |
. . . . . 6
|
| 17 | 16 | rgen 2416 |
. . . . 5
|
| 18 | peano5nni 8042 |
. . . . 5
| |
| 19 | 5, 17, 18 | mp2an 416 |
. . . 4
|
| 20 | 19 | sseli 2995 |
. . 3
|
| 21 | nnind.4 |
. . . 4
| |
| 22 | 21 | elrab 2749 |
. . 3
|
| 23 | 20, 22 | sylib 120 |
. 2
|
| 24 | 23 | simprd 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-cnex 7067 ax-resscn 7068 ax-1re 7070 ax-addrcl 7073 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 df-inn 8040 |
| This theorem is referenced by: nnindALT 8056 nn1m1nn 8057 nnaddcl 8059 nnmulcl 8060 nnge1 8062 nn1gt1 8072 nnsub 8077 zaddcllempos 8388 zaddcllemneg 8390 nneoor 8449 peano5uzti 8455 nn0ind-raph 8464 indstr 8681 qbtwnzlemshrink 9258 expivallem 9477 expcllem 9487 expap0 9506 resqrexlemover 9896 resqrexlemlo 9899 resqrexlemcalc3 9902 gcdmultiple 10409 rplpwr 10416 prmind2 10502 prmdvdsexp 10527 sqrt2irr 10541 pw2dvdslemn 10543 |
| Copyright terms: Public domain | W3C validator |