ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordex Unicode version

Theorem nnaordex 6123
Description: Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordex  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nnaordex
Dummy variables  b  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2142 . . . . . 6  |-  ( b  =  B  ->  ( A  e.  b  <->  A  e.  B ) )
2 eqeq2 2090 . . . . . . . 8  |-  ( b  =  B  ->  (
( A  +o  x
)  =  b  <->  ( A  +o  x )  =  B ) )
32anbi2d 451 . . . . . . 7  |-  ( b  =  B  ->  (
( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <-> 
( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
43rexbidv 2369 . . . . . 6  |-  ( b  =  B  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
51, 4imbi12d 232 . . . . 5  |-  ( b  =  B  ->  (
( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) )  <->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
65imbi2d 228 . . . 4  |-  ( b  =  B  ->  (
( A  e.  om  ->  ( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) ) )  <->  ( A  e.  om  ->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) ) )
7 eleq2 2142 . . . . . 6  |-  ( b  =  (/)  ->  ( A  e.  b  <->  A  e.  (/) ) )
8 eqeq2 2090 . . . . . . . 8  |-  ( b  =  (/)  ->  ( ( A  +o  x )  =  b  <->  ( A  +o  x )  =  (/) ) )
98anbi2d 451 . . . . . . 7  |-  ( b  =  (/)  ->  ( (
(/)  e.  x  /\  ( A  +o  x
)  =  b )  <-> 
( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) ) )
109rexbidv 2369 . . . . . 6  |-  ( b  =  (/)  ->  ( E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  b )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) ) )
117, 10imbi12d 232 . . . . 5  |-  ( b  =  (/)  ->  ( ( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) )  <->  ( A  e.  (/)  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) ) ) )
12 eleq2 2142 . . . . . 6  |-  ( b  =  y  ->  ( A  e.  b  <->  A  e.  y ) )
13 eqeq2 2090 . . . . . . . 8  |-  ( b  =  y  ->  (
( A  +o  x
)  =  b  <->  ( A  +o  x )  =  y ) )
1413anbi2d 451 . . . . . . 7  |-  ( b  =  y  ->  (
( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <-> 
( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )
1514rexbidv 2369 . . . . . 6  |-  ( b  =  y  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )
1612, 15imbi12d 232 . . . . 5  |-  ( b  =  y  ->  (
( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) )  <->  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) ) )
17 eleq2 2142 . . . . . 6  |-  ( b  =  suc  y  -> 
( A  e.  b  <-> 
A  e.  suc  y
) )
18 eqeq2 2090 . . . . . . . 8  |-  ( b  =  suc  y  -> 
( ( A  +o  x )  =  b  <-> 
( A  +o  x
)  =  suc  y
) )
1918anbi2d 451 . . . . . . 7  |-  ( b  =  suc  y  -> 
( ( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <-> 
( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
2019rexbidv 2369 . . . . . 6  |-  ( b  =  suc  y  -> 
( E. x  e. 
om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
2117, 20imbi12d 232 . . . . 5  |-  ( b  =  suc  y  -> 
( ( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) )  <->  ( A  e. 
suc  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) ) )
22 noel 3255 . . . . . . 7  |-  -.  A  e.  (/)
2322pm2.21i 607 . . . . . 6  |-  ( A  e.  (/)  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) )
2423a1i 9 . . . . 5  |-  ( A  e.  om  ->  ( A  e.  (/)  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  (/) ) ) )
25 elsuci 4158 . . . . . . 7  |-  ( A  e.  suc  y  -> 
( A  e.  y  \/  A  =  y ) )
26 simpr 108 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( A  e.  y  ->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  y ) ) )
27 peano2 4336 . . . . . . . . . . . . . . 15  |-  ( x  e.  om  ->  suc  x  e.  om )
2827ad2antlr 472 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) )  ->  suc  x  e. 
om )
29 elelsuc 4164 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  x  ->  (/)  e.  suc  x )
3029a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  -> 
(/)  e.  suc  x ) )
31 nnasuc 6078 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  suc  x )  =  suc  ( A  +o  x
) )
32 suceq 4157 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  +o  x )  =  y  ->  suc  ( A  +o  x
)  =  suc  y
)
3331, 32sylan9eq 2133 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  ( A  +o  x
)  =  y )  ->  ( A  +o  suc  x )  =  suc  y )
3433ex 113 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( A  +o  x )  =  y  ->  ( A  +o  suc  x )  =  suc  y ) )
3530, 34anim12d 328 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  ( (/)  e.  suc  x  /\  ( A  +o  suc  x )  =  suc  y ) ) )
3635imp 122 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) )  ->  ( (/)  e.  suc  x  /\  ( A  +o  suc  x )  =  suc  y ) )
37 eleq2 2142 . . . . . . . . . . . . . . . 16  |-  ( z  =  suc  x  -> 
( (/)  e.  z  <->  (/)  e.  suc  x ) )
38 oveq2 5540 . . . . . . . . . . . . . . . . 17  |-  ( z  =  suc  x  -> 
( A  +o  z
)  =  ( A  +o  suc  x ) )
3938eqeq1d 2089 . . . . . . . . . . . . . . . 16  |-  ( z  =  suc  x  -> 
( ( A  +o  z )  =  suc  y 
<->  ( A  +o  suc  x )  =  suc  y ) )
4037, 39anbi12d 456 . . . . . . . . . . . . . . 15  |-  ( z  =  suc  x  -> 
( ( (/)  e.  z  /\  ( A  +o  z )  =  suc  y )  <->  ( (/)  e.  suc  x  /\  ( A  +o  suc  x )  =  suc  y ) ) )
4140rspcev 2701 . . . . . . . . . . . . . 14  |-  ( ( suc  x  e.  om  /\  ( (/)  e.  suc  x  /\  ( A  +o  suc  x )  =  suc  y ) )  ->  E. z  e.  om  ( (/)  e.  z  /\  ( A  +o  z
)  =  suc  y
) )
4228, 36, 41syl2anc 403 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) )  ->  E. z  e.  om  ( (/)  e.  z  /\  ( A  +o  z )  =  suc  y ) )
4342ex 113 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  E. z  e.  om  ( (/)  e.  z  /\  ( A  +o  z
)  =  suc  y
) ) )
4443rexlimdva 2477 . . . . . . . . . . 11  |-  ( A  e.  om  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  E. z  e.  om  ( (/)  e.  z  /\  ( A  +o  z
)  =  suc  y
) ) )
45 eleq2 2142 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  ( (/) 
e.  z  <->  (/)  e.  x
) )
46 oveq2 5540 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  ( A  +o  z )  =  ( A  +o  x
) )
4746eqeq1d 2089 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
( A  +o  z
)  =  suc  y  <->  ( A  +o  x )  =  suc  y ) )
4845, 47anbi12d 456 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( (/)  e.  z  /\  ( A  +o  z
)  =  suc  y
)  <->  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
4948cbvrexv 2578 . . . . . . . . . . 11  |-  ( E. z  e.  om  ( (/) 
e.  z  /\  ( A  +o  z )  =  suc  y )  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) )
5044, 49syl6ib 159 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
5150ad2antlr 472 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
5226, 51syld 44 . . . . . . . 8  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( A  e.  y  ->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  suc  y ) ) )
53 0lt1o 6046 . . . . . . . . . . . 12  |-  (/)  e.  1o
5453a1i 9 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  A  =  y )  -> 
(/)  e.  1o )
55 nnon 4350 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  A  e.  On )
56 oa1suc 6070 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  ( A  +o  1o )  =  suc  A )
5755, 56syl 14 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( A  +o  1o )  =  suc  A )
58 suceq 4157 . . . . . . . . . . . 12  |-  ( A  =  y  ->  suc  A  =  suc  y )
5957, 58sylan9eq 2133 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  A  =  y )  ->  ( A  +o  1o )  =  suc  y )
60 1onn 6116 . . . . . . . . . . . 12  |-  1o  e.  om
61 eleq2 2142 . . . . . . . . . . . . . 14  |-  ( x  =  1o  ->  ( (/) 
e.  x  <->  (/)  e.  1o ) )
62 oveq2 5540 . . . . . . . . . . . . . . 15  |-  ( x  =  1o  ->  ( A  +o  x )  =  ( A  +o  1o ) )
6362eqeq1d 2089 . . . . . . . . . . . . . 14  |-  ( x  =  1o  ->  (
( A  +o  x
)  =  suc  y  <->  ( A  +o  1o )  =  suc  y ) )
6461, 63anbi12d 456 . . . . . . . . . . . . 13  |-  ( x  =  1o  ->  (
( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
)  <->  ( (/)  e.  1o  /\  ( A  +o  1o )  =  suc  y ) ) )
6564rspcev 2701 . . . . . . . . . . . 12  |-  ( ( 1o  e.  om  /\  ( (/)  e.  1o  /\  ( A  +o  1o )  =  suc  y ) )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) )
6660, 65mpan 414 . . . . . . . . . . 11  |-  ( (
(/)  e.  1o  /\  ( A  +o  1o )  =  suc  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) )
6754, 59, 66syl2anc 403 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  A  =  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) )
6867ex 113 . . . . . . . . 9  |-  ( A  e.  om  ->  ( A  =  y  ->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  suc  y ) ) )
6968ad2antlr 472 . . . . . . . 8  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( A  =  y  ->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  suc  y ) ) )
7052, 69jaod 669 . . . . . . 7  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  (
( A  e.  y  \/  A  =  y )  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
7125, 70syl5 32 . . . . . 6  |-  ( ( ( y  e.  om  /\  A  e.  om )  /\  ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) ) )  ->  ( A  e.  suc  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) )
7271exp31 356 . . . . 5  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  e.  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  y ) )  ->  ( A  e.  suc  y  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  suc  y
) ) ) ) )
7311, 16, 21, 24, 72finds2 4342 . . . 4  |-  ( b  e.  om  ->  ( A  e.  om  ->  ( A  e.  b  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  b ) ) ) )
746, 73vtoclga 2664 . . 3  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
7574impcom 123 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
76 peano1 4335 . . . . . . . . 9  |-  (/)  e.  om
77 nnaord 6105 . . . . . . . . 9  |-  ( (
(/)  e.  om  /\  x  e.  om  /\  A  e. 
om )  ->  ( (/) 
e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x ) ) )
7876, 77mp3an1 1255 . . . . . . . 8  |-  ( ( x  e.  om  /\  A  e.  om )  ->  ( (/)  e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x
) ) )
7978ancoms 264 . . . . . . 7  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x
) ) )
80 nna0 6076 . . . . . . . . 9  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
8180adantr 270 . . . . . . . 8  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  (/) )  =  A )
8281eleq1d 2147 . . . . . . 7  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( A  +o  (/) )  e.  ( A  +o  x )  <->  A  e.  ( A  +o  x
) ) )
8379, 82bitrd 186 . . . . . 6  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  <->  A  e.  ( A  +o  x ) ) )
8483anbi1d 452 . . . . 5  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  <-> 
( A  e.  ( A  +o  x )  /\  ( A  +o  x )  =  B ) ) )
85 eleq2 2142 . . . . . 6  |-  ( ( A  +o  x )  =  B  ->  ( A  e.  ( A  +o  x )  <->  A  e.  B ) )
8685biimpac 292 . . . . 5  |-  ( ( A  e.  ( A  +o  x )  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
)
8784, 86syl6bi 161 . . . 4  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
8887rexlimdva 2477 . . 3  |-  ( A  e.  om  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
8988adantr 270 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. x  e. 
om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
9075, 89impbid 127 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433   E.wrex 2349   (/)c0 3251   Oncon0 4118   suc csuc 4120   omcom 4331  (class class class)co 5532   1oc1o 6017    +o coa 6021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028
This theorem is referenced by:  nnawordex  6124  ltexpi  6527
  Copyright terms: Public domain W3C validator