ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaass Unicode version

Theorem nnaass 6087
Description: Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaass  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )

Proof of Theorem nnaass
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5540 . . . . . 6  |-  ( x  =  C  ->  (
( A  +o  B
)  +o  x )  =  ( ( A  +o  B )  +o  C ) )
2 oveq2 5540 . . . . . . 7  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
32oveq2d 5548 . . . . . 6  |-  ( x  =  C  ->  ( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  C ) ) )
41, 3eqeq12d 2095 . . . . 5  |-  ( x  =  C  ->  (
( ( A  +o  B )  +o  x
)  =  ( A  +o  ( B  +o  x ) )  <->  ( ( A  +o  B )  +o  C )  =  ( A  +o  ( B  +o  C ) ) ) )
54imbi2d 228 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  x )  =  ( A  +o  ( B  +o  x ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) ) ) )
6 oveq2 5540 . . . . . 6  |-  ( x  =  (/)  ->  ( ( A  +o  B )  +o  x )  =  ( ( A  +o  B )  +o  (/) ) )
7 oveq2 5540 . . . . . . 7  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
87oveq2d 5548 . . . . . 6  |-  ( x  =  (/)  ->  ( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  (/) ) ) )
96, 8eqeq12d 2095 . . . . 5  |-  ( x  =  (/)  ->  ( ( ( A  +o  B
)  +o  x )  =  ( A  +o  ( B  +o  x
) )  <->  ( ( A  +o  B )  +o  (/) )  =  ( A  +o  ( B  +o  (/) ) ) ) )
10 oveq2 5540 . . . . . 6  |-  ( x  =  y  ->  (
( A  +o  B
)  +o  x )  =  ( ( A  +o  B )  +o  y ) )
11 oveq2 5540 . . . . . . 7  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
1211oveq2d 5548 . . . . . 6  |-  ( x  =  y  ->  ( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  y ) ) )
1310, 12eqeq12d 2095 . . . . 5  |-  ( x  =  y  ->  (
( ( A  +o  B )  +o  x
)  =  ( A  +o  ( B  +o  x ) )  <->  ( ( A  +o  B )  +o  y )  =  ( A  +o  ( B  +o  y ) ) ) )
14 oveq2 5540 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( A  +o  B )  +o  x
)  =  ( ( A  +o  B )  +o  suc  y ) )
15 oveq2 5540 . . . . . . 7  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1615oveq2d 5548 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  suc  y
) ) )
1714, 16eqeq12d 2095 . . . . 5  |-  ( x  =  suc  y  -> 
( ( ( A  +o  B )  +o  x )  =  ( A  +o  ( B  +o  x ) )  <-> 
( ( A  +o  B )  +o  suc  y )  =  ( A  +o  ( B  +o  suc  y ) ) ) )
18 nnacl 6082 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )
19 nna0 6076 . . . . . . 7  |-  ( ( A  +o  B )  e.  om  ->  (
( A  +o  B
)  +o  (/) )  =  ( A  +o  B
) )
2018, 19syl 14 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  (/) )  =  ( A  +o  B
) )
21 nna0 6076 . . . . . . . 8  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
2221oveq2d 5548 . . . . . . 7  |-  ( B  e.  om  ->  ( A  +o  ( B  +o  (/) ) )  =  ( A  +o  B ) )
2322adantl 271 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  ( B  +o  (/) ) )  =  ( A  +o  B
) )
2420, 23eqtr4d 2116 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  (/) )  =  ( A  +o  ( B  +o  (/) ) ) )
25 suceq 4157 . . . . . . 7  |-  ( ( ( A  +o  B
)  +o  y )  =  ( A  +o  ( B  +o  y
) )  ->  suc  ( ( A  +o  B )  +o  y
)  =  suc  ( A  +o  ( B  +o  y ) ) )
26 nnasuc 6078 . . . . . . . . 9  |-  ( ( ( A  +o  B
)  e.  om  /\  y  e.  om )  ->  ( ( A  +o  B )  +o  suc  y )  =  suc  ( ( A  +o  B )  +o  y
) )
2718, 26sylan 277 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( A  +o  B )  +o 
suc  y )  =  suc  ( ( A  +o  B )  +o  y ) )
28 nnasuc 6078 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
2928oveq2d 5548 . . . . . . . . . . 11  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( A  +o  ( B  +o  suc  y ) )  =  ( A  +o  suc  ( B  +o  y ) ) )
3029adantl 271 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  +o  ( B  +o  suc  y ) )  =  ( A  +o  suc  ( B  +o  y
) ) )
31 nnacl 6082 . . . . . . . . . . 11  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  e.  om )
32 nnasuc 6078 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  ( B  +o  y
)  e.  om )  ->  ( A  +o  suc  ( B  +o  y
) )  =  suc  ( A  +o  ( B  +o  y ) ) )
3331, 32sylan2 280 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  +o  suc  ( B  +o  y ) )  =  suc  ( A  +o  ( B  +o  y
) ) )
3430, 33eqtrd 2113 . . . . . . . . 9  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  +o  ( B  +o  suc  y ) )  =  suc  ( A  +o  ( B  +o  y
) ) )
3534anassrs 392 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( A  +o  ( B  +o  suc  y
) )  =  suc  ( A  +o  ( B  +o  y ) ) )
3627, 35eqeq12d 2095 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( ( A  +o  B )  +o  suc  y )  =  ( A  +o  ( B  +o  suc  y
) )  <->  suc  ( ( A  +o  B )  +o  y )  =  suc  ( A  +o  ( B  +o  y
) ) ) )
3725, 36syl5ibr 154 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( ( A  +o  B )  +o  y )  =  ( A  +o  ( B  +o  y ) )  ->  ( ( A  +o  B )  +o 
suc  y )  =  ( A  +o  ( B  +o  suc  y ) ) ) )
3837expcom 114 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( ( A  +o  B )  +o  y )  =  ( A  +o  ( B  +o  y ) )  ->  ( ( A  +o  B )  +o 
suc  y )  =  ( A  +o  ( B  +o  suc  y ) ) ) ) )
399, 13, 17, 24, 38finds2 4342 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  x
)  =  ( A  +o  ( B  +o  x ) ) ) )
405, 39vtoclga 2664 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  C
)  =  ( A  +o  ( B  +o  C ) ) ) )
4140com12 30 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( C  e.  om  ->  ( ( A  +o  B )  +o  C
)  =  ( A  +o  ( B  +o  C ) ) ) )
42413impia 1135 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   (/)c0 3251   suc csuc 4120   omcom 4331  (class class class)co 5532    +o coa 6021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028
This theorem is referenced by:  nndi  6088  nnmsucr  6090  addasspig  6520  addassnq0  6652  prarloclemlo  6684
  Copyright terms: Public domain W3C validator