| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsub | Unicode version | ||
| Description: Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnsub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 3789 |
. . . . . 6
| |
| 2 | oveq1 5539 |
. . . . . . 7
| |
| 3 | 2 | eleq1d 2147 |
. . . . . 6
|
| 4 | 1, 3 | imbi12d 232 |
. . . . 5
|
| 5 | 4 | ralbidv 2368 |
. . . 4
|
| 6 | breq2 3789 |
. . . . . 6
| |
| 7 | oveq1 5539 |
. . . . . . 7
| |
| 8 | 7 | eleq1d 2147 |
. . . . . 6
|
| 9 | 6, 8 | imbi12d 232 |
. . . . 5
|
| 10 | 9 | ralbidv 2368 |
. . . 4
|
| 11 | breq2 3789 |
. . . . . 6
| |
| 12 | oveq1 5539 |
. . . . . . 7
| |
| 13 | 12 | eleq1d 2147 |
. . . . . 6
|
| 14 | 11, 13 | imbi12d 232 |
. . . . 5
|
| 15 | 14 | ralbidv 2368 |
. . . 4
|
| 16 | breq2 3789 |
. . . . . 6
| |
| 17 | oveq1 5539 |
. . . . . . 7
| |
| 18 | 17 | eleq1d 2147 |
. . . . . 6
|
| 19 | 16, 18 | imbi12d 232 |
. . . . 5
|
| 20 | 19 | ralbidv 2368 |
. . . 4
|
| 21 | nnnlt1 8065 |
. . . . . 6
| |
| 22 | 21 | pm2.21d 581 |
. . . . 5
|
| 23 | 22 | rgen 2416 |
. . . 4
|
| 24 | breq1 3788 |
. . . . . . 7
| |
| 25 | oveq2 5540 |
. . . . . . . 8
| |
| 26 | 25 | eleq1d 2147 |
. . . . . . 7
|
| 27 | 24, 26 | imbi12d 232 |
. . . . . 6
|
| 28 | 27 | cbvralv 2577 |
. . . . 5
|
| 29 | nncn 8047 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | adantr 270 |
. . . . . . . . . . . 12
|
| 31 | ax-1cn 7069 |
. . . . . . . . . . . 12
| |
| 32 | pncan 7314 |
. . . . . . . . . . . 12
| |
| 33 | 30, 31, 32 | sylancl 404 |
. . . . . . . . . . 11
|
| 34 | simpl 107 |
. . . . . . . . . . 11
| |
| 35 | 33, 34 | eqeltrd 2155 |
. . . . . . . . . 10
|
| 36 | oveq2 5540 |
. . . . . . . . . . 11
| |
| 37 | 36 | eleq1d 2147 |
. . . . . . . . . 10
|
| 38 | 35, 37 | syl5ibrcom 155 |
. . . . . . . . 9
|
| 39 | 38 | a1dd 47 |
. . . . . . . 8
|
| 40 | 39 | a1dd 47 |
. . . . . . 7
|
| 41 | breq1 3788 |
. . . . . . . . . 10
| |
| 42 | oveq2 5540 |
. . . . . . . . . . 11
| |
| 43 | 42 | eleq1d 2147 |
. . . . . . . . . 10
|
| 44 | 41, 43 | imbi12d 232 |
. . . . . . . . 9
|
| 45 | 44 | rspcv 2697 |
. . . . . . . 8
|
| 46 | nnre 8046 |
. . . . . . . . . . 11
| |
| 47 | nnre 8046 |
. . . . . . . . . . 11
| |
| 48 | 1re 7118 |
. . . . . . . . . . . 12
| |
| 49 | ltsubadd 7536 |
. . . . . . . . . . . 12
| |
| 50 | 48, 49 | mp3an2 1256 |
. . . . . . . . . . 11
|
| 51 | 46, 47, 50 | syl2anr 284 |
. . . . . . . . . 10
|
| 52 | nncn 8047 |
. . . . . . . . . . . 12
| |
| 53 | subsub3 7340 |
. . . . . . . . . . . . 13
| |
| 54 | 31, 53 | mp3an3 1257 |
. . . . . . . . . . . 12
|
| 55 | 29, 52, 54 | syl2an 283 |
. . . . . . . . . . 11
|
| 56 | 55 | eleq1d 2147 |
. . . . . . . . . 10
|
| 57 | 51, 56 | imbi12d 232 |
. . . . . . . . 9
|
| 58 | 57 | biimpd 142 |
. . . . . . . 8
|
| 59 | 45, 58 | syl9r 72 |
. . . . . . 7
|
| 60 | nn1m1nn 8057 |
. . . . . . . 8
| |
| 61 | 60 | adantl 271 |
. . . . . . 7
|
| 62 | 40, 59, 61 | mpjaod 670 |
. . . . . 6
|
| 63 | 62 | ralrimdva 2441 |
. . . . 5
|
| 64 | 28, 63 | syl5bi 150 |
. . . 4
|
| 65 | 5, 10, 15, 20, 23, 64 | nnind 8055 |
. . 3
|
| 66 | breq1 3788 |
. . . . 5
| |
| 67 | oveq2 5540 |
. . . . . 6
| |
| 68 | 67 | eleq1d 2147 |
. . . . 5
|
| 69 | 66, 68 | imbi12d 232 |
. . . 4
|
| 70 | 69 | rspcva 2699 |
. . 3
|
| 71 | 65, 70 | sylan2 280 |
. 2
|
| 72 | nngt0 8064 |
. . 3
| |
| 73 | nnre 8046 |
. . . 4
| |
| 74 | nnre 8046 |
. . . 4
| |
| 75 | posdif 7559 |
. . . 4
| |
| 76 | 73, 74, 75 | syl2an 283 |
. . 3
|
| 77 | 72, 76 | syl5ibr 154 |
. 2
|
| 78 | 71, 77 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 |
| This theorem is referenced by: nnsubi 8078 uz3m2nn 8661 |
| Copyright terms: Public domain | W3C validator |