ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uz3m2nn Unicode version

Theorem uz3m2nn 8661
Description: An integer greater than or equal to 3 decreased by 2 is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
Assertion
Ref Expression
uz3m2nn  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( N  -  2 )  e.  NN )

Proof of Theorem uz3m2nn
StepHypRef Expression
1 eluz2 8625 . . 3  |-  ( N  e.  ( ZZ>= `  3
)  <->  ( 3  e.  ZZ  /\  N  e.  ZZ  /\  3  <_  N ) )
2 2lt3 8202 . . . . . 6  |-  2  <  3
3 2re 8109 . . . . . . . 8  |-  2  e.  RR
43a1i 9 . . . . . . 7  |-  ( N  e.  ZZ  ->  2  e.  RR )
5 3re 8113 . . . . . . . 8  |-  3  e.  RR
65a1i 9 . . . . . . 7  |-  ( N  e.  ZZ  ->  3  e.  RR )
7 zre 8355 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  RR )
8 ltletr 7200 . . . . . . 7  |-  ( ( 2  e.  RR  /\  3  e.  RR  /\  N  e.  RR )  ->  (
( 2  <  3  /\  3  <_  N )  ->  2  <  N
) )
94, 6, 7, 8syl3anc 1169 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( 2  <  3  /\  3  <_  N )  ->  2  <  N
) )
102, 9mpani 420 . . . . 5  |-  ( N  e.  ZZ  ->  (
3  <_  N  ->  2  <  N ) )
1110imp 122 . . . 4  |-  ( ( N  e.  ZZ  /\  3  <_  N )  -> 
2  <  N )
12113adant1 956 . . 3  |-  ( ( 3  e.  ZZ  /\  N  e.  ZZ  /\  3  <_  N )  ->  2  <  N )
131, 12sylbi 119 . 2  |-  ( N  e.  ( ZZ>= `  3
)  ->  2  <  N )
14 2nn 8193 . . 3  |-  2  e.  NN
15 eluzge3nn 8660 . . 3  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  NN )
16 nnsub 8077 . . 3  |-  ( ( 2  e.  NN  /\  N  e.  NN )  ->  ( 2  <  N  <->  ( N  -  2 )  e.  NN ) )
1714, 15, 16sylancr 405 . 2  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( 2  <  N  <->  ( N  -  2 )  e.  NN ) )
1813, 17mpbid 145 1  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( N  -  2 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    e. wcel 1433   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   RRcr 6980    < clt 7153    <_ cle 7154    - cmin 7279   NNcn 8039   2c2 8089   3c3 8090   ZZcz 8351   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-2 8098  df-3 8099  df-z 8352  df-uz 8620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator