ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwetri Unicode version

Theorem nnwetri 6382
Description: A natural number is well-ordered by  _E. More specifically, this order both satisfies  We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.)
Assertion
Ref Expression
nnwetri  |-  ( A  e.  om  ->  (  _E  We  A  /\  A. x  e.  A  A. y  e.  A  (
x  _E  y  \/  x  =  y  \/  y  _E  x ) ) )
Distinct variable group:    x, A, y

Proof of Theorem nnwetri
StepHypRef Expression
1 nnord 4352 . . 3  |-  ( A  e.  om  ->  Ord  A )
2 ordwe 4318 . . 3  |-  ( Ord 
A  ->  _E  We  A )
31, 2syl 14 . 2  |-  ( A  e.  om  ->  _E  We  A )
4 simprl 497 . . . . 5  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  x  e.  A )
5 simpl 107 . . . . 5  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  A  e.  om )
6 elnn 4346 . . . . 5  |-  ( ( x  e.  A  /\  A  e.  om )  ->  x  e.  om )
74, 5, 6syl2anc 403 . . . 4  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  x  e.  om )
8 simprr 498 . . . . 5  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  y  e.  A )
9 elnn 4346 . . . . 5  |-  ( ( y  e.  A  /\  A  e.  om )  ->  y  e.  om )
108, 5, 9syl2anc 403 . . . 4  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  y  e.  om )
11 nntri3or 6095 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
12 epel 4047 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
13 biid 169 . . . . . 6  |-  ( x  =  y  <->  x  =  y )
14 epel 4047 . . . . . 6  |-  ( y  _E  x  <->  y  e.  x )
1512, 13, 143orbi123i 1128 . . . . 5  |-  ( ( x  _E  y  \/  x  =  y  \/  y  _E  x )  <-> 
( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
1611, 15sylibr 132 . . . 4  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  _E  y  \/  x  =  y  \/  y  _E  x
) )
177, 10, 16syl2anc 403 . . 3  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x  _E  y  \/  x  =  y  \/  y  _E  x ) )
1817ralrimivva 2443 . 2  |-  ( A  e.  om  ->  A. x  e.  A  A. y  e.  A  ( x  _E  y  \/  x  =  y  \/  y  _E  x ) )
193, 18jca 300 1  |-  ( A  e.  om  ->  (  _E  We  A  /\  A. x  e.  A  A. y  e.  A  (
x  _E  y  \/  x  =  y  \/  y  _E  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ w3o 918    e. wcel 1433   A.wral 2348   class class class wbr 3785    _E cep 4042    We wwe 4085   Ord word 4117   omcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-tr 3876  df-eprel 4044  df-frfor 4086  df-frind 4087  df-wetr 4089  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator