ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri3or Unicode version

Theorem nntri3or 6095
Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nntri3or  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )

Proof of Theorem nntri3or
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2142 . . . . 5  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
2 eqeq2 2090 . . . . 5  |-  ( x  =  B  ->  ( A  =  x  <->  A  =  B ) )
3 eleq1 2141 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
41, 2, 33orbi123d 1242 . . . 4  |-  ( x  =  B  ->  (
( A  e.  x  \/  A  =  x  \/  x  e.  A
)  <->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) ) )
54imbi2d 228 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  e.  x  \/  A  =  x  \/  x  e.  A
) )  <->  ( A  e.  om  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) ) ) )
6 eleq2 2142 . . . . 5  |-  ( x  =  (/)  ->  ( A  e.  x  <->  A  e.  (/) ) )
7 eqeq2 2090 . . . . 5  |-  ( x  =  (/)  ->  ( A  =  x  <->  A  =  (/) ) )
8 eleq1 2141 . . . . 5  |-  ( x  =  (/)  ->  ( x  e.  A  <->  (/)  e.  A
) )
96, 7, 83orbi123d 1242 . . . 4  |-  ( x  =  (/)  ->  ( ( A  e.  x  \/  A  =  x  \/  x  e.  A )  <-> 
( A  e.  (/)  \/  A  =  (/)  \/  (/)  e.  A
) ) )
10 eleq2 2142 . . . . 5  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
11 eqeq2 2090 . . . . 5  |-  ( x  =  y  ->  ( A  =  x  <->  A  =  y ) )
12 eleq1 2141 . . . . 5  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
1310, 11, 123orbi123d 1242 . . . 4  |-  ( x  =  y  ->  (
( A  e.  x  \/  A  =  x  \/  x  e.  A
)  <->  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) ) )
14 eleq2 2142 . . . . 5  |-  ( x  =  suc  y  -> 
( A  e.  x  <->  A  e.  suc  y ) )
15 eqeq2 2090 . . . . 5  |-  ( x  =  suc  y  -> 
( A  =  x  <-> 
A  =  suc  y
) )
16 eleq1 2141 . . . . 5  |-  ( x  =  suc  y  -> 
( x  e.  A  <->  suc  y  e.  A ) )
1714, 15, 163orbi123d 1242 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  e.  x  \/  A  =  x  \/  x  e.  A )  <->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
18 0elnn 4358 . . . . 5  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
19 olc 664 . . . . . 6  |-  ( ( A  =  (/)  \/  (/)  e.  A
)  ->  ( A  e.  (/)  \/  ( A  =  (/)  \/  (/)  e.  A
) ) )
20 3orass 922 . . . . . 6  |-  ( ( A  e.  (/)  \/  A  =  (/)  \/  (/)  e.  A
)  <->  ( A  e.  (/)  \/  ( A  =  (/)  \/  (/)  e.  A ) ) )
2119, 20sylibr 132 . . . . 5  |-  ( ( A  =  (/)  \/  (/)  e.  A
)  ->  ( A  e.  (/)  \/  A  =  (/)  \/  (/)  e.  A ) )
2218, 21syl 14 . . . 4  |-  ( A  e.  om  ->  ( A  e.  (/)  \/  A  =  (/)  \/  (/)  e.  A
) )
23 df-3or 920 . . . . . 6  |-  ( ( A  e.  y  \/  A  =  y  \/  y  e.  A )  <-> 
( ( A  e.  y  \/  A  =  y )  \/  y  e.  A ) )
24 elex 2610 . . . . . . . 8  |-  ( y  e.  om  ->  y  e.  _V )
25 elsuc2g 4160 . . . . . . . . 9  |-  ( y  e.  _V  ->  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) ) )
26 3mix1 1107 . . . . . . . . 9  |-  ( A  e.  suc  y  -> 
( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
)
2725, 26syl6bir 162 . . . . . . . 8  |-  ( y  e.  _V  ->  (
( A  e.  y  \/  A  =  y )  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
2824, 27syl 14 . . . . . . 7  |-  ( y  e.  om  ->  (
( A  e.  y  \/  A  =  y )  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
29 nnsucelsuc 6093 . . . . . . . . 9  |-  ( A  e.  om  ->  (
y  e.  A  <->  suc  y  e. 
suc  A ) )
30 elsuci 4158 . . . . . . . . 9  |-  ( suc  y  e.  suc  A  ->  ( suc  y  e.  A  \/  suc  y  =  A ) )
3129, 30syl6bi 161 . . . . . . . 8  |-  ( A  e.  om  ->  (
y  e.  A  -> 
( suc  y  e.  A  \/  suc  y  =  A ) ) )
32 eqcom 2083 . . . . . . . . . . . . 13  |-  ( suc  y  =  A  <->  A  =  suc  y )
3332orbi2i 711 . . . . . . . . . . . 12  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  <->  ( suc  y  e.  A  \/  A  =  suc  y ) )
3433biimpi 118 . . . . . . . . . . 11  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  ->  ( suc  y  e.  A  \/  A  =  suc  y ) )
3534orcomd 680 . . . . . . . . . 10  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  ->  ( A  =  suc  y  \/  suc  y  e.  A )
)
3635olcd 685 . . . . . . . . 9  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  ->  ( A  e.  suc  y  \/  ( A  =  suc  y  \/ 
suc  y  e.  A
) ) )
37 3orass 922 . . . . . . . . 9  |-  ( ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )  <->  ( A  e.  suc  y  \/  ( A  =  suc  y  \/ 
suc  y  e.  A
) ) )
3836, 37sylibr 132 . . . . . . . 8  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
)
3931, 38syl6 33 . . . . . . 7  |-  ( A  e.  om  ->  (
y  e.  A  -> 
( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
4028, 39jaao 671 . . . . . 6  |-  ( ( y  e.  om  /\  A  e.  om )  ->  ( ( ( A  e.  y  \/  A  =  y )  \/  y  e.  A )  ->  ( A  e. 
suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
4123, 40syl5bi 150 . . . . 5  |-  ( ( y  e.  om  /\  A  e.  om )  ->  ( ( A  e.  y  \/  A  =  y  \/  y  e.  A )  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A
) ) )
4241ex 113 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  e.  y  \/  A  =  y  \/  y  e.  A
)  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) ) )
439, 13, 17, 22, 42finds2 4342 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  e.  x  \/  A  =  x  \/  x  e.  A ) ) )
445, 43vtoclga 2664 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
) )
4544impcom 123 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661    \/ w3o 918    = wceq 1284    e. wcel 1433   _Vcvv 2601   (/)c0 3251   suc csuc 4120   omcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332
This theorem is referenced by:  nntri2  6096  nntri1  6097  nntri3  6098  nntri2or2  6099  nndceq  6100  nndcel  6101  nnsseleq  6102  nnawordex  6124  nnwetri  6382  ltsopi  6510  pitri3or  6512  frec2uzlt2d  9406
  Copyright terms: Public domain W3C validator