| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nntri3or | Unicode version | ||
| Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nntri3or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2142 |
. . . . 5
| |
| 2 | eqeq2 2090 |
. . . . 5
| |
| 3 | eleq1 2141 |
. . . . 5
| |
| 4 | 1, 2, 3 | 3orbi123d 1242 |
. . . 4
|
| 5 | 4 | imbi2d 228 |
. . 3
|
| 6 | eleq2 2142 |
. . . . 5
| |
| 7 | eqeq2 2090 |
. . . . 5
| |
| 8 | eleq1 2141 |
. . . . 5
| |
| 9 | 6, 7, 8 | 3orbi123d 1242 |
. . . 4
|
| 10 | eleq2 2142 |
. . . . 5
| |
| 11 | eqeq2 2090 |
. . . . 5
| |
| 12 | eleq1 2141 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3orbi123d 1242 |
. . . 4
|
| 14 | eleq2 2142 |
. . . . 5
| |
| 15 | eqeq2 2090 |
. . . . 5
| |
| 16 | eleq1 2141 |
. . . . 5
| |
| 17 | 14, 15, 16 | 3orbi123d 1242 |
. . . 4
|
| 18 | 0elnn 4358 |
. . . . 5
| |
| 19 | olc 664 |
. . . . . 6
| |
| 20 | 3orass 922 |
. . . . . 6
| |
| 21 | 19, 20 | sylibr 132 |
. . . . 5
|
| 22 | 18, 21 | syl 14 |
. . . 4
|
| 23 | df-3or 920 |
. . . . . 6
| |
| 24 | elex 2610 |
. . . . . . . 8
| |
| 25 | elsuc2g 4160 |
. . . . . . . . 9
| |
| 26 | 3mix1 1107 |
. . . . . . . . 9
| |
| 27 | 25, 26 | syl6bir 162 |
. . . . . . . 8
|
| 28 | 24, 27 | syl 14 |
. . . . . . 7
|
| 29 | nnsucelsuc 6093 |
. . . . . . . . 9
| |
| 30 | elsuci 4158 |
. . . . . . . . 9
| |
| 31 | 29, 30 | syl6bi 161 |
. . . . . . . 8
|
| 32 | eqcom 2083 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | orbi2i 711 |
. . . . . . . . . . . 12
|
| 34 | 33 | biimpi 118 |
. . . . . . . . . . 11
|
| 35 | 34 | orcomd 680 |
. . . . . . . . . 10
|
| 36 | 35 | olcd 685 |
. . . . . . . . 9
|
| 37 | 3orass 922 |
. . . . . . . . 9
| |
| 38 | 36, 37 | sylibr 132 |
. . . . . . . 8
|
| 39 | 31, 38 | syl6 33 |
. . . . . . 7
|
| 40 | 28, 39 | jaao 671 |
. . . . . 6
|
| 41 | 23, 40 | syl5bi 150 |
. . . . 5
|
| 42 | 41 | ex 113 |
. . . 4
|
| 43 | 9, 13, 17, 22, 42 | finds2 4342 |
. . 3
|
| 44 | 5, 43 | vtoclga 2664 |
. 2
|
| 45 | 44 | impcom 123 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-int 3637 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 |
| This theorem is referenced by: nntri2 6096 nntri1 6097 nntri3 6098 nntri2or2 6099 nndceq 6100 nndcel 6101 nnsseleq 6102 nnawordex 6124 nnwetri 6382 ltsopi 6510 pitri3or 6512 frec2uzlt2d 9406 |
| Copyright terms: Public domain | W3C validator |