ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onunsnss Unicode version

Theorem onunsnss 6383
Description: Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.)
Assertion
Ref Expression
onunsnss  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  B  C_  A
)

Proof of Theorem onunsnss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elirr 4284 . . . . 5  |-  -.  B  e.  B
2 elsni 3416 . . . . . . . 8  |-  ( x  e.  { B }  ->  x  =  B )
32adantl 271 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  ( A  u.  { B }
)  e.  On )  /\  x  e.  B
)  /\  x  e.  { B } )  ->  x  =  B )
4 simplr 496 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  ( A  u.  { B }
)  e.  On )  /\  x  e.  B
)  /\  x  e.  { B } )  ->  x  e.  B )
53, 4eqeltrrd 2156 . . . . . 6  |-  ( ( ( ( B  e.  V  /\  ( A  u.  { B }
)  e.  On )  /\  x  e.  B
)  /\  x  e.  { B } )  ->  B  e.  B )
65ex 113 . . . . 5  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  ( x  e.  { B }  ->  B  e.  B ) )
71, 6mtoi 622 . . . 4  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  -.  x  e.  { B } )
8 snidg 3423 . . . . . . . . 9  |-  ( B  e.  V  ->  B  e.  { B } )
9 elun2 3140 . . . . . . . . 9  |-  ( B  e.  { B }  ->  B  e.  ( A  u.  { B }
) )
108, 9syl 14 . . . . . . . 8  |-  ( B  e.  V  ->  B  e.  ( A  u.  { B } ) )
1110adantr 270 . . . . . . 7  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  B  e.  ( A  u.  { B } ) )
12 ontr1 4144 . . . . . . . 8  |-  ( ( A  u.  { B } )  e.  On  ->  ( ( x  e.  B  /\  B  e.  ( A  u.  { B } ) )  ->  x  e.  ( A  u.  { B } ) ) )
1312adantl 271 . . . . . . 7  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  ( ( x  e.  B  /\  B  e.  ( A  u.  { B } ) )  ->  x  e.  ( A  u.  { B } ) ) )
1411, 13mpan2d 418 . . . . . 6  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  ( x  e.  B  ->  x  e.  ( A  u.  { B } ) ) )
1514imp 122 . . . . 5  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  x  e.  ( A  u.  { B } ) )
16 elun 3113 . . . . 5  |-  ( x  e.  ( A  u.  { B } )  <->  ( x  e.  A  \/  x  e.  { B } ) )
1715, 16sylib 120 . . . 4  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  ( x  e.  A  \/  x  e.  { B } ) )
187, 17ecased 1280 . . 3  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  x  e.  A )
1918ex 113 . 2  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  ( x  e.  B  ->  x  e.  A ) )
2019ssrdv 3005 1  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  B  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661    = wceq 1284    e. wcel 1433    u. cun 2971    C_ wss 2973   {csn 3398   Oncon0 4118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator