| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onunsnss | Unicode version | ||
| Description: Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.) |
| Ref | Expression |
|---|---|
| onunsnss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4284 |
. . . . 5
| |
| 2 | elsni 3416 |
. . . . . . . 8
| |
| 3 | 2 | adantl 271 |
. . . . . . 7
|
| 4 | simplr 496 |
. . . . . . 7
| |
| 5 | 3, 4 | eqeltrrd 2156 |
. . . . . 6
|
| 6 | 5 | ex 113 |
. . . . 5
|
| 7 | 1, 6 | mtoi 622 |
. . . 4
|
| 8 | snidg 3423 |
. . . . . . . . 9
| |
| 9 | elun2 3140 |
. . . . . . . . 9
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . 8
|
| 11 | 10 | adantr 270 |
. . . . . . 7
|
| 12 | ontr1 4144 |
. . . . . . . 8
| |
| 13 | 12 | adantl 271 |
. . . . . . 7
|
| 14 | 11, 13 | mpan2d 418 |
. . . . . 6
|
| 15 | 14 | imp 122 |
. . . . 5
|
| 16 | elun 3113 |
. . . . 5
| |
| 17 | 15, 16 | sylib 120 |
. . . 4
|
| 18 | 7, 17 | ecased 1280 |
. . 3
|
| 19 | 18 | ex 113 |
. 2
|
| 20 | 19 | ssrdv 3005 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |