| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > odd2np1lem | Unicode version | ||
| Description: Lemma for odd2np1 10272. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| odd2np1lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2090 |
. . . 4
| |
| 2 | 1 | rexbidv 2369 |
. . 3
|
| 3 | eqeq2 2090 |
. . . 4
| |
| 4 | 3 | rexbidv 2369 |
. . 3
|
| 5 | 2, 4 | orbi12d 739 |
. 2
|
| 6 | eqeq2 2090 |
. . . . 5
| |
| 7 | 6 | rexbidv 2369 |
. . . 4
|
| 8 | oveq2 5540 |
. . . . . . 7
| |
| 9 | 8 | oveq1d 5547 |
. . . . . 6
|
| 10 | 9 | eqeq1d 2089 |
. . . . 5
|
| 11 | 10 | cbvrexv 2578 |
. . . 4
|
| 12 | 7, 11 | syl6bb 194 |
. . 3
|
| 13 | eqeq2 2090 |
. . . . 5
| |
| 14 | 13 | rexbidv 2369 |
. . . 4
|
| 15 | oveq1 5539 |
. . . . . 6
| |
| 16 | 15 | eqeq1d 2089 |
. . . . 5
|
| 17 | 16 | cbvrexv 2578 |
. . . 4
|
| 18 | 14, 17 | syl6bb 194 |
. . 3
|
| 19 | 12, 18 | orbi12d 739 |
. 2
|
| 20 | eqeq2 2090 |
. . . 4
| |
| 21 | 20 | rexbidv 2369 |
. . 3
|
| 22 | eqeq2 2090 |
. . . 4
| |
| 23 | 22 | rexbidv 2369 |
. . 3
|
| 24 | 21, 23 | orbi12d 739 |
. 2
|
| 25 | eqeq2 2090 |
. . . 4
| |
| 26 | 25 | rexbidv 2369 |
. . 3
|
| 27 | eqeq2 2090 |
. . . 4
| |
| 28 | 27 | rexbidv 2369 |
. . 3
|
| 29 | 26, 28 | orbi12d 739 |
. 2
|
| 30 | 0z 8362 |
. . . 4
| |
| 31 | 2cn 8110 |
. . . . 5
| |
| 32 | 31 | mul02i 7494 |
. . . 4
|
| 33 | oveq1 5539 |
. . . . . 6
| |
| 34 | 33 | eqeq1d 2089 |
. . . . 5
|
| 35 | 34 | rspcev 2701 |
. . . 4
|
| 36 | 30, 32, 35 | mp2an 416 |
. . 3
|
| 37 | 36 | olci 683 |
. 2
|
| 38 | orcom 679 |
. . 3
| |
| 39 | zcn 8356 |
. . . . . . . . 9
| |
| 40 | mulcom 7102 |
. . . . . . . . 9
| |
| 41 | 39, 31, 40 | sylancl 404 |
. . . . . . . 8
|
| 42 | 41 | adantl 271 |
. . . . . . 7
|
| 43 | 42 | eqeq1d 2089 |
. . . . . 6
|
| 44 | eqid 2081 |
. . . . . . . . 9
| |
| 45 | oveq2 5540 |
. . . . . . . . . . . 12
| |
| 46 | 45 | oveq1d 5547 |
. . . . . . . . . . 11
|
| 47 | 46 | eqeq1d 2089 |
. . . . . . . . . 10
|
| 48 | 47 | rspcev 2701 |
. . . . . . . . 9
|
| 49 | 44, 48 | mpan2 415 |
. . . . . . . 8
|
| 50 | oveq1 5539 |
. . . . . . . . . 10
| |
| 51 | 50 | eqeq2d 2092 |
. . . . . . . . 9
|
| 52 | 51 | rexbidv 2369 |
. . . . . . . 8
|
| 53 | 49, 52 | syl5ibcom 153 |
. . . . . . 7
|
| 54 | 53 | adantl 271 |
. . . . . 6
|
| 55 | 43, 54 | sylbid 148 |
. . . . 5
|
| 56 | 55 | rexlimdva 2477 |
. . . 4
|
| 57 | peano2z 8387 |
. . . . . . . 8
| |
| 58 | 57 | adantl 271 |
. . . . . . 7
|
| 59 | zcn 8356 |
. . . . . . . . 9
| |
| 60 | mulcom 7102 |
. . . . . . . . . . . . 13
| |
| 61 | 31, 60 | mpan2 415 |
. . . . . . . . . . . 12
|
| 62 | 31 | mulid2i 7122 |
. . . . . . . . . . . . 13
|
| 63 | 62 | a1i 9 |
. . . . . . . . . . . 12
|
| 64 | 61, 63 | oveq12d 5550 |
. . . . . . . . . . 11
|
| 65 | df-2 8098 |
. . . . . . . . . . . 12
| |
| 66 | 65 | oveq2i 5543 |
. . . . . . . . . . 11
|
| 67 | 64, 66 | syl6eq 2129 |
. . . . . . . . . 10
|
| 68 | ax-1cn 7069 |
. . . . . . . . . . 11
| |
| 69 | adddir 7110 |
. . . . . . . . . . 11
| |
| 70 | 68, 31, 69 | mp3an23 1260 |
. . . . . . . . . 10
|
| 71 | mulcl 7100 |
. . . . . . . . . . . 12
| |
| 72 | 31, 71 | mpan 414 |
. . . . . . . . . . 11
|
| 73 | addass 7103 |
. . . . . . . . . . . 12
| |
| 74 | 68, 68, 73 | mp3an23 1260 |
. . . . . . . . . . 11
|
| 75 | 72, 74 | syl 14 |
. . . . . . . . . 10
|
| 76 | 67, 70, 75 | 3eqtr4d 2123 |
. . . . . . . . 9
|
| 77 | 59, 76 | syl 14 |
. . . . . . . 8
|
| 78 | 77 | adantl 271 |
. . . . . . 7
|
| 79 | oveq1 5539 |
. . . . . . . . 9
| |
| 80 | 79 | eqeq1d 2089 |
. . . . . . . 8
|
| 81 | 80 | rspcev 2701 |
. . . . . . 7
|
| 82 | 58, 78, 81 | syl2anc 403 |
. . . . . 6
|
| 83 | oveq1 5539 |
. . . . . . . 8
| |
| 84 | 83 | eqeq2d 2092 |
. . . . . . 7
|
| 85 | 84 | rexbidv 2369 |
. . . . . 6
|
| 86 | 82, 85 | syl5ibcom 153 |
. . . . 5
|
| 87 | 86 | rexlimdva 2477 |
. . . 4
|
| 88 | 56, 87 | orim12d 732 |
. . 3
|
| 89 | 38, 88 | syl5bi 150 |
. 2
|
| 90 | 5, 19, 24, 29, 37, 89 | nn0ind 8461 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-2 8098 df-n0 8289 df-z 8352 |
| This theorem is referenced by: odd2np1 10272 |
| Copyright terms: Public domain | W3C validator |