ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2z Unicode version

Theorem peano2z 8387
Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
peano2z  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )

Proof of Theorem peano2z
StepHypRef Expression
1 zre 8355 . . 3  |-  ( N  e.  ZZ  ->  N  e.  RR )
2 1red 7134 . . 3  |-  ( N  e.  ZZ  ->  1  e.  RR )
31, 2readdcld 7148 . 2  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  RR )
4 elznn0nn 8365 . . . . 5  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
54biimpi 118 . . . 4  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
61biantrurd 299 . . . . 5  |-  ( N  e.  ZZ  ->  ( -u N  e.  NN  <->  ( N  e.  RR  /\  -u N  e.  NN ) ) )
76orbi2d 736 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  e.  NN0  \/  -u N  e.  NN ) 
<->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) ) )
85, 7mpbird 165 . . 3  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  -u N  e.  NN ) )
9 peano2nn0 8328 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
109a1i 9 . . . 4  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN0 ) )
111adantr 270 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  N  e.  RR )
12 1red 7134 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  1  e.  RR )
1311, 12readdcld 7148 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( N  + 
1 )  e.  RR )
1413renegcld 7484 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u ( N  + 
1 )  e.  RR )
1514recnd 7147 . . . . . 6  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u ( N  + 
1 )  e.  CC )
1611recnd 7147 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  N  e.  CC )
17 1cnd 7135 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  1  e.  CC )
1816, 17negdid 7432 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u ( N  + 
1 )  =  (
-u N  +  -u
1 ) )
1918oveq1d 5547 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  =  ( ( -u N  +  -u 1 )  +  1 ) )
2016negcld 7406 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u N  e.  CC )
21 neg1cn 8144 . . . . . . . . . . . 12  |-  -u 1  e.  CC
2221a1i 9 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u 1  e.  CC )
2320, 22, 17addassd 7141 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( ( -u N  +  -u 1 )  +  1 )  =  ( -u N  +  ( -u 1  +  1 ) ) )
2419, 23eqtrd 2113 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  =  ( -u N  +  ( -u 1  +  1 ) ) )
25 ax-1cn 7069 . . . . . . . . . . 11  |-  1  e.  CC
26 1pneg1e0 8150 . . . . . . . . . . 11  |-  ( 1  +  -u 1 )  =  0
2725, 21, 26addcomli 7253 . . . . . . . . . 10  |-  ( -u
1  +  1 )  =  0
2827oveq2i 5543 . . . . . . . . 9  |-  ( -u N  +  ( -u 1  +  1 ) )  =  ( -u N  +  0 )
2924, 28syl6eq 2129 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  =  ( -u N  + 
0 ) )
3020addid1d 7257 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u N  +  0 )  = 
-u N )
3129, 30eqtrd 2113 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  = 
-u N )
32 simpr 108 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u N  e.  NN )
3331, 32eqeltrd 2155 . . . . . 6  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  e.  NN )
34 elnn0nn 8330 . . . . . 6  |-  ( -u ( N  +  1
)  e.  NN0  <->  ( -u ( N  +  1 )  e.  CC  /\  ( -u ( N  +  1 )  +  1 )  e.  NN ) )
3515, 33, 34sylanbrc 408 . . . . 5  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u ( N  + 
1 )  e.  NN0 )
3635ex 113 . . . 4  |-  ( N  e.  ZZ  ->  ( -u N  e.  NN  ->  -u ( N  +  1
)  e.  NN0 )
)
3710, 36orim12d 732 . . 3  |-  ( N  e.  ZZ  ->  (
( N  e.  NN0  \/  -u N  e.  NN )  ->  ( ( N  +  1 )  e. 
NN0  \/  -u ( N  +  1 )  e. 
NN0 ) ) )
388, 37mpd 13 . 2  |-  ( N  e.  ZZ  ->  (
( N  +  1 )  e.  NN0  \/  -u ( N  +  1 )  e.  NN0 )
)
39 elznn0 8366 . 2  |-  ( ( N  +  1 )  e.  ZZ  <->  ( ( N  +  1 )  e.  RR  /\  (
( N  +  1 )  e.  NN0  \/  -u ( N  +  1 )  e.  NN0 )
) )
403, 38, 39sylanbrc 408 1  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661    e. wcel 1433  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984   -ucneg 7280   NNcn 8039   NN0cn0 8288   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by:  zaddcllempos  8388  peano2zm  8389  zleltp1  8406  btwnnz  8441  peano2uz2  8454  uzind  8458  uzind2  8459  peano2zd  8472  eluzp1m1  8642  eluzp1p1  8644  peano2uz  8671  zltaddlt1le  9028  fzp1disj  9097  elfzp1b  9114  fzneuz  9118  fzp1nel  9121  fzval3  9213  fzossfzop1  9221  rebtwn2zlemstep  9261  flhalf  9304  frec2uzzd  9402  frec2uzsucd  9403  zesq  9591  odd2np1lem  10271  odd2np1  10272  mulsucdiv2z  10285  oddp1d2  10290  zob  10291  ltoddhalfle  10293
  Copyright terms: Public domain W3C validator