ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleqdv Unicode version

Theorem raleqdv 2555
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.)
Hypothesis
Ref Expression
raleq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
raleqdv  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  B  ps )
)
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem raleqdv
StepHypRef Expression
1 raleq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 raleq 2549 . 2  |-  ( A  =  B  ->  ( A. x  e.  A  ps 
<-> 
A. x  e.  B  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  B  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1284   A.wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353
This theorem is referenced by:  raleqbidv  2561  raleqbidva  2563  cbvfo  5445  isoselem  5479  ofrfval  5740  issmo2  5927  smoeq  5928  tfrlemisucaccv  5962  fzrevral2  9123  fzrevral3  9124  fzshftral  9125  fzoshftral  9247  uzsinds  9428  caucvgre  9867  cvg1nlemres  9871  rexuz3  9876  resqrexlemoverl  9907  resqrexlemsqa  9910  resqrexlemex  9911  climconst  10129  climshftlemg  10141  serif0  10189  zsupcllemstep  10341  zsupcllemex  10342  infssuzex  10345  prmind2  10502
  Copyright terms: Public domain W3C validator