![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > raleqdv | Unicode version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.) |
Ref | Expression |
---|---|
raleq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
raleqdv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | raleq 2549 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 |
This theorem is referenced by: raleqbidv 2561 raleqbidva 2563 cbvfo 5445 isoselem 5479 ofrfval 5740 issmo2 5927 smoeq 5928 tfrlemisucaccv 5962 fzrevral2 9123 fzrevral3 9124 fzshftral 9125 fzoshftral 9247 uzsinds 9428 caucvgre 9867 cvg1nlemres 9871 rexuz3 9876 resqrexlemoverl 9907 resqrexlemsqa 9910 resqrexlemex 9911 climconst 10129 climshftlemg 10141 serif0 10189 zsupcllemstep 10341 zsupcllemex 10342 infssuzex 10345 prmind2 10502 |
Copyright terms: Public domain | W3C validator |