| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omsuc | Unicode version | ||
| Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| omsuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 4126 |
. . . . . . 7
| |
| 2 | iuneq1 3691 |
. . . . . . 7
| |
| 3 | 1, 2 | ax-mp 7 |
. . . . . 6
|
| 4 | iunxun 3756 |
. . . . . 6
| |
| 5 | 3, 4 | eqtri 2101 |
. . . . 5
|
| 6 | oveq2 5540 |
. . . . . . . 8
| |
| 7 | 6 | oveq1d 5547 |
. . . . . . 7
|
| 8 | 7 | iunxsng 3753 |
. . . . . 6
|
| 9 | 8 | uneq2d 3126 |
. . . . 5
|
| 10 | 5, 9 | syl5eq 2125 |
. . . 4
|
| 11 | 10 | adantl 271 |
. . 3
|
| 12 | suceloni 4245 |
. . . 4
| |
| 13 | omv2 6068 |
. . . 4
| |
| 14 | 12, 13 | sylan2 280 |
. . 3
|
| 15 | omv2 6068 |
. . . 4
| |
| 16 | 15 | uneq1d 3125 |
. . 3
|
| 17 | 11, 14, 16 | 3eqtr4d 2123 |
. 2
|
| 18 | omcl 6064 |
. . 3
| |
| 19 | simpl 107 |
. . 3
| |
| 20 | oaword1 6073 |
. . . 4
| |
| 21 | ssequn1 3142 |
. . . 4
| |
| 22 | 20, 21 | sylib 120 |
. . 3
|
| 23 | 18, 19, 22 | syl2anc 403 |
. 2
|
| 24 | 17, 23 | eqtrd 2113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 |
| This theorem is referenced by: onmsuc 6075 |
| Copyright terms: Public domain | W3C validator |