ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omv2 Unicode version

Theorem omv2 6068
Description: Value of ordinal multiplication. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
omv2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  U_ x  e.  B  ( ( A  .o  x )  +o  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem omv2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 omfnex 6052 . . . 4  |-  ( A  e.  On  ->  (
y  e.  _V  |->  ( y  +o  A ) )  Fn  _V )
2 0elon 4147 . . . . 5  |-  (/)  e.  On
3 rdgival 5992 . . . . 5  |-  ( ( ( y  e.  _V  |->  ( y  +o  A
) )  Fn  _V  /\  (/)  e.  On  /\  B  e.  On )  ->  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  B )  =  ( (/)  u.  U_ x  e.  B  (
( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) ) )
42, 3mp3an2 1256 . . . 4  |-  ( ( ( y  e.  _V  |->  ( y  +o  A
) )  Fn  _V  /\  B  e.  On )  ->  ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  B )  =  ( (/)  u.  U_ x  e.  B  (
( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) ) )
51, 4sylan 277 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( y  e.  _V  |->  ( y  +o  A ) ) ,  (/) ) `  B )  =  (
(/)  u.  U_ x  e.  B  ( ( y  e.  _V  |->  ( y  +o  A ) ) `
 ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  x )
) ) )
6 omv 6058 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  B ) )
7 onelon 4139 . . . . . . 7  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
8 omexg 6054 . . . . . . . . 9  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  e.  _V )
9 omcl 6064 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  e.  On )
10 simpl 107 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  x  e.  On )  ->  A  e.  On )
11 oacl 6063 . . . . . . . . . 10  |-  ( ( ( A  .o  x
)  e.  On  /\  A  e.  On )  ->  ( ( A  .o  x )  +o  A
)  e.  On )
129, 10, 11syl2anc 403 . . . . . . . . 9  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( A  .o  x )  +o  A
)  e.  On )
13 oveq1 5539 . . . . . . . . . 10  |-  ( y  =  ( A  .o  x )  ->  (
y  +o  A )  =  ( ( A  .o  x )  +o  A ) )
14 eqid 2081 . . . . . . . . . 10  |-  ( y  e.  _V  |->  ( y  +o  A ) )  =  ( y  e. 
_V  |->  ( y  +o  A ) )
1513, 14fvmptg 5269 . . . . . . . . 9  |-  ( ( ( A  .o  x
)  e.  _V  /\  ( ( A  .o  x )  +o  A
)  e.  On )  ->  ( ( y  e.  _V  |->  ( y  +o  A ) ) `
 ( A  .o  x ) )  =  ( ( A  .o  x )  +o  A
) )
168, 12, 15syl2anc 403 . . . . . . . 8  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( y  e. 
_V  |->  ( y  +o  A ) ) `  ( A  .o  x
) )  =  ( ( A  .o  x
)  +o  A ) )
17 omv 6058 . . . . . . . . 9  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  =  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) )
1817fveq2d 5202 . . . . . . . 8  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( y  e. 
_V  |->  ( y  +o  A ) ) `  ( A  .o  x
) )  =  ( ( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
1916, 18eqtr3d 2115 . . . . . . 7  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( A  .o  x )  +o  A
)  =  ( ( y  e.  _V  |->  ( y  +o  A ) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
207, 19sylan2 280 . . . . . 6  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  B ) )  ->  ( ( A  .o  x )  +o  A )  =  ( ( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
2120anassrs 392 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  x  e.  B
)  ->  ( ( A  .o  x )  +o  A )  =  ( ( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
2221iuneq2dv 3699 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  U_ x  e.  B  ( ( A  .o  x )  +o  A
)  =  U_ x  e.  B  ( (
y  e.  _V  |->  ( y  +o  A ) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
2322uneq2d 3126 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( (/)  u.  U_ x  e.  B  ( ( A  .o  x )  +o  A ) )  =  ( (/)  u.  U_ x  e.  B  ( (
y  e.  _V  |->  ( y  +o  A ) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) ) )
245, 6, 233eqtr4d 2123 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( (/)  u. 
U_ x  e.  B  ( ( A  .o  x )  +o  A
) ) )
25 uncom 3116 . . 3  |-  ( (/)  u. 
U_ x  e.  B  ( ( A  .o  x )  +o  A
) )  =  (
U_ x  e.  B  ( ( A  .o  x )  +o  A
)  u.  (/) )
26 un0 3278 . . 3  |-  ( U_ x  e.  B  (
( A  .o  x
)  +o  A )  u.  (/) )  =  U_ x  e.  B  (
( A  .o  x
)  +o  A )
2725, 26eqtri 2101 . 2  |-  ( (/)  u. 
U_ x  e.  B  ( ( A  .o  x )  +o  A
) )  =  U_ x  e.  B  (
( A  .o  x
)  +o  A )
2824, 27syl6eq 2129 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  U_ x  e.  B  ( ( A  .o  x )  +o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601    u. cun 2971   (/)c0 3251   U_ciun 3678    |-> cmpt 3839   Oncon0 4118    Fn wfn 4917   ` cfv 4922  (class class class)co 5532   reccrdg 5979    +o coa 6021    .o comu 6022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029
This theorem is referenced by:  omsuc  6074
  Copyright terms: Public domain W3C validator