ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omsuc GIF version

Theorem omsuc 6074
Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omsuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 suc 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))

Proof of Theorem omsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-suc 4126 . . . . . . 7 suc 𝐵 = (𝐵 ∪ {𝐵})
2 iuneq1 3691 . . . . . . 7 (suc 𝐵 = (𝐵 ∪ {𝐵}) → 𝑥 ∈ suc 𝐵((𝐴 ·𝑜 𝑥) +𝑜 𝐴) = 𝑥 ∈ (𝐵 ∪ {𝐵})((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
31, 2ax-mp 7 . . . . . 6 𝑥 ∈ suc 𝐵((𝐴 ·𝑜 𝑥) +𝑜 𝐴) = 𝑥 ∈ (𝐵 ∪ {𝐵})((𝐴 ·𝑜 𝑥) +𝑜 𝐴)
4 iunxun 3756 . . . . . 6 𝑥 ∈ (𝐵 ∪ {𝐵})((𝐴 ·𝑜 𝑥) +𝑜 𝐴) = ( 𝑥𝐵 ((𝐴 ·𝑜 𝑥) +𝑜 𝐴) ∪ 𝑥 ∈ {𝐵} ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
53, 4eqtri 2101 . . . . 5 𝑥 ∈ suc 𝐵((𝐴 ·𝑜 𝑥) +𝑜 𝐴) = ( 𝑥𝐵 ((𝐴 ·𝑜 𝑥) +𝑜 𝐴) ∪ 𝑥 ∈ {𝐵} ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
6 oveq2 5540 . . . . . . . 8 (𝑥 = 𝐵 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝐵))
76oveq1d 5547 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴 ·𝑜 𝑥) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
87iunxsng 3753 . . . . . 6 (𝐵 ∈ On → 𝑥 ∈ {𝐵} ((𝐴 ·𝑜 𝑥) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
98uneq2d 3126 . . . . 5 (𝐵 ∈ On → ( 𝑥𝐵 ((𝐴 ·𝑜 𝑥) +𝑜 𝐴) ∪ 𝑥 ∈ {𝐵} ((𝐴 ·𝑜 𝑥) +𝑜 𝐴)) = ( 𝑥𝐵 ((𝐴 ·𝑜 𝑥) +𝑜 𝐴) ∪ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴)))
105, 9syl5eq 2125 . . . 4 (𝐵 ∈ On → 𝑥 ∈ suc 𝐵((𝐴 ·𝑜 𝑥) +𝑜 𝐴) = ( 𝑥𝐵 ((𝐴 ·𝑜 𝑥) +𝑜 𝐴) ∪ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴)))
1110adantl 271 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥 ∈ suc 𝐵((𝐴 ·𝑜 𝑥) +𝑜 𝐴) = ( 𝑥𝐵 ((𝐴 ·𝑜 𝑥) +𝑜 𝐴) ∪ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴)))
12 suceloni 4245 . . . 4 (𝐵 ∈ On → suc 𝐵 ∈ On)
13 omv2 6068 . . . 4 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·𝑜 suc 𝐵) = 𝑥 ∈ suc 𝐵((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
1412, 13sylan2 280 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 suc 𝐵) = 𝑥 ∈ suc 𝐵((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
15 omv2 6068 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) = 𝑥𝐵 ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
1615uneq1d 3125 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) ∪ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴)) = ( 𝑥𝐵 ((𝐴 ·𝑜 𝑥) +𝑜 𝐴) ∪ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴)))
1711, 14, 163eqtr4d 2123 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 suc 𝐵) = ((𝐴 ·𝑜 𝐵) ∪ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴)))
18 omcl 6064 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
19 simpl 107 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
20 oaword1 6073 . . . 4 (((𝐴 ·𝑜 𝐵) ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 𝐵) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
21 ssequn1 3142 . . . 4 ((𝐴 ·𝑜 𝐵) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴) ↔ ((𝐴 ·𝑜 𝐵) ∪ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴)) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
2220, 21sylib 120 . . 3 (((𝐴 ·𝑜 𝐵) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·𝑜 𝐵) ∪ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴)) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
2318, 19, 22syl2anc 403 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) ∪ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴)) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
2417, 23eqtrd 2113 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 suc 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  cun 2971  wss 2973  {csn 3398   ciun 3678  Oncon0 4118  suc csuc 4120  (class class class)co 5532   +𝑜 coa 6021   ·𝑜 comu 6022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029
This theorem is referenced by:  onmsuc  6075
  Copyright terms: Public domain W3C validator