ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onnmin Unicode version

Theorem onnmin 4311
Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) (Constructive proof by Mario Carneiro and Jim Kingdon, 21-Jul-2019.)
Assertion
Ref Expression
onnmin  |-  ( ( A  C_  On  /\  B  e.  A )  ->  -.  B  e.  |^| A )

Proof of Theorem onnmin
StepHypRef Expression
1 intss1 3651 . . 3  |-  ( B  e.  A  ->  |^| A  C_  B )
2 elirr 4284 . . . 4  |-  -.  B  e.  B
3 ssel 2993 . . . 4  |-  ( |^| A  C_  B  ->  ( B  e.  |^| A  ->  B  e.  B )
)
42, 3mtoi 622 . . 3  |-  ( |^| A  C_  B  ->  -.  B  e.  |^| A )
51, 4syl 14 . 2  |-  ( B  e.  A  ->  -.  B  e.  |^| A )
65adantl 271 1  |-  ( ( A  C_  On  /\  B  e.  A )  ->  -.  B  e.  |^| A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    e. wcel 1433    C_ wss 2973   |^|cint 3636   Oncon0 4118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986  df-sn 3404  df-int 3637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator