ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpwsucss Unicode version

Theorem ordpwsucss 4310
Description: The collection of ordinals in the power class of an ordinal is a superset of its successor.

We can think of  ( ~P A  i^i  On ) as another possible definition of successor, which would be equivalent to df-suc 4126 given excluded middle. It is an ordinal, and has some successor-like properties. For example, if  A  e.  On then both  U. suc  A  =  A (onunisuci 4187) and  U. { x  e.  On  |  x  C_  A }  =  A (onuniss2 4256).

Constructively  ( ~P A  i^i  On ) and  suc  A cannot be shown to be equivalent (as proved at ordpwsucexmid 4313). (Contributed by Jim Kingdon, 21-Jul-2019.)

Assertion
Ref Expression
ordpwsucss  |-  ( Ord 
A  ->  suc  A  C_  ( ~P A  i^i  On ) )

Proof of Theorem ordpwsucss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordsuc 4306 . . . . 5  |-  ( Ord 
A  <->  Ord  suc  A )
2 ordelon 4138 . . . . . 6  |-  ( ( Ord  suc  A  /\  x  e.  suc  A )  ->  x  e.  On )
32ex 113 . . . . 5  |-  ( Ord 
suc  A  ->  ( x  e.  suc  A  ->  x  e.  On )
)
41, 3sylbi 119 . . . 4  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  x  e.  On ) )
5 ordtr 4133 . . . . 5  |-  ( Ord 
A  ->  Tr  A
)
6 trsucss 4178 . . . . 5  |-  ( Tr  A  ->  ( x  e.  suc  A  ->  x  C_  A ) )
75, 6syl 14 . . . 4  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  x  C_  A ) )
84, 7jcad 301 . . 3  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  (
x  e.  On  /\  x  C_  A ) ) )
9 elin 3155 . . . 4  |-  ( x  e.  ( ~P A  i^i  On )  <->  ( x  e.  ~P A  /\  x  e.  On ) )
10 selpw 3389 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
1110anbi2ci 446 . . . 4  |-  ( ( x  e.  ~P A  /\  x  e.  On ) 
<->  ( x  e.  On  /\  x  C_  A )
)
129, 11bitri 182 . . 3  |-  ( x  e.  ( ~P A  i^i  On )  <->  ( x  e.  On  /\  x  C_  A ) )
138, 12syl6ibr 160 . 2  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  x  e.  ( ~P A  i^i  On ) ) )
1413ssrdv 3005 1  |-  ( Ord 
A  ->  suc  A  C_  ( ~P A  i^i  On ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1433    i^i cin 2972    C_ wss 2973   ~Pcpw 3382   Tr wtr 3875   Ord word 4117   Oncon0 4118   suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator