ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabrexex2 Unicode version

Theorem oprabrexex2 5777
Description: Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
oprabrexex2.1  |-  A  e. 
_V
oprabrexex2.2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  e.  _V
Assertion
Ref Expression
oprabrexex2  |-  { <. <.
x ,  y >. ,  z >.  |  E. w  e.  A  ph }  e.  _V
Distinct variable group:    x, A, y, z, w
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem oprabrexex2
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5536 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  E. w  e.  A  ph }  =  { v  |  E. x E. y E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  E. w  e.  A  ph ) }
2 rexcom4 2622 . . . . 5  |-  ( E. w  e.  A  E. x E. y E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  ph ) 
<->  E. x E. w  e.  A  E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
3 rexcom4 2622 . . . . . . 7  |-  ( E. w  e.  A  E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. y E. w  e.  A  E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
4 rexcom4 2622 . . . . . . . . 9  |-  ( E. w  e.  A  E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z E. w  e.  A  ( v  =  <. <.
x ,  y >. ,  z >.  /\  ph ) )
5 r19.42v 2511 . . . . . . . . . 10  |-  ( E. w  e.  A  ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph )  <->  ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph ) )
65exbii 1536 . . . . . . . . 9  |-  ( E. z E. w  e.  A  ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  E. w  e.  A  ph )
)
74, 6bitri 182 . . . . . . . 8  |-  ( E. w  e.  A  E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  E. w  e.  A  ph )
)
87exbii 1536 . . . . . . 7  |-  ( E. y E. w  e.  A  E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph )  <->  E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph ) )
93, 8bitri 182 . . . . . 6  |-  ( E. w  e.  A  E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph ) )
109exbii 1536 . . . . 5  |-  ( E. x E. w  e.  A  E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. x E. y E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  E. w  e.  A  ph ) )
112, 10bitr2i 183 . . . 4  |-  ( E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph )  <->  E. w  e.  A  E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
1211abbii 2194 . . 3  |-  { v  |  E. x E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
E. w  e.  A  ph ) }  =  {
v  |  E. w  e.  A  E. x E. y E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph ) }
131, 12eqtri 2101 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  E. w  e.  A  ph }  =  { v  |  E. w  e.  A  E. x E. y E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }
14 oprabrexex2.1 . . 3  |-  A  e. 
_V
15 df-oprab 5536 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { v  |  E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
16 oprabrexex2.2 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  e.  _V
1715, 16eqeltrri 2152 . . 3  |-  { v  |  E. x E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) }  e.  _V
1814, 17abrexex2 5771 . 2  |-  { v  |  E. w  e.  A  E. x E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) }  e.  _V
1913, 18eqeltri 2151 1  |-  { <. <.
x ,  y >. ,  z >.  |  E. w  e.  A  ph }  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   E.wrex 2349   _Vcvv 2601   <.cop 3401   {coprab 5533
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-oprab 5536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator