| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opthreg | Unicode version | ||
| Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Set Induction ax-setind 4280 (via the preleq 4298 step). See df-op 3407 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) |
| Ref | Expression |
|---|---|
| preleq.1 |
|
| preleq.2 |
|
| preleq.3 |
|
| preleq.4 |
|
| Ref | Expression |
|---|---|
| opthreg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preleq.1 |
. . . . 5
| |
| 2 | 1 | prid1 3498 |
. . . 4
|
| 3 | preleq.3 |
. . . . 5
| |
| 4 | 3 | prid1 3498 |
. . . 4
|
| 5 | preleq.2 |
. . . . . 6
| |
| 6 | prexg 3966 |
. . . . . 6
| |
| 7 | 1, 5, 6 | mp2an 416 |
. . . . 5
|
| 8 | preleq.4 |
. . . . . 6
| |
| 9 | prexg 3966 |
. . . . . 6
| |
| 10 | 3, 8, 9 | mp2an 416 |
. . . . 5
|
| 11 | 1, 7, 3, 10 | preleq 4298 |
. . . 4
|
| 12 | 2, 4, 11 | mpanl12 426 |
. . 3
|
| 13 | preq1 3469 |
. . . . . 6
| |
| 14 | 13 | eqeq1d 2089 |
. . . . 5
|
| 15 | 5, 8 | preqr2 3561 |
. . . . 5
|
| 16 | 14, 15 | syl6bi 161 |
. . . 4
|
| 17 | 16 | imdistani 433 |
. . 3
|
| 18 | 12, 17 | syl 14 |
. 2
|
| 19 | preq1 3469 |
. . . 4
| |
| 20 | 19 | adantr 270 |
. . 3
|
| 21 | preq12 3471 |
. . . 4
| |
| 22 | 21 | preq2d 3476 |
. . 3
|
| 23 | 20, 22 | eqtrd 2113 |
. 2
|
| 24 | 18, 23 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pr 3964 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-dif 2975 df-un 2977 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |