| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suc11g | Unicode version | ||
| Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.) |
| Ref | Expression |
|---|---|
| suc11g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp 4297 |
. . . 4
| |
| 2 | sucidg 4171 |
. . . . . . . . . . . 12
| |
| 3 | eleq2 2142 |
. . . . . . . . . . . 12
| |
| 4 | 2, 3 | syl5ibrcom 155 |
. . . . . . . . . . 11
|
| 5 | elsucg 4159 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | sylibd 147 |
. . . . . . . . . 10
|
| 7 | 6 | imp 122 |
. . . . . . . . 9
|
| 8 | 7 | 3adant1 956 |
. . . . . . . 8
|
| 9 | sucidg 4171 |
. . . . . . . . . . . 12
| |
| 10 | eleq2 2142 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | syl5ibcom 153 |
. . . . . . . . . . 11
|
| 12 | elsucg 4159 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | sylibd 147 |
. . . . . . . . . 10
|
| 14 | 13 | imp 122 |
. . . . . . . . 9
|
| 15 | 14 | 3adant2 957 |
. . . . . . . 8
|
| 16 | 8, 15 | jca 300 |
. . . . . . 7
|
| 17 | eqcom 2083 |
. . . . . . . . 9
| |
| 18 | 17 | orbi2i 711 |
. . . . . . . 8
|
| 19 | 18 | anbi1i 445 |
. . . . . . 7
|
| 20 | 16, 19 | sylib 120 |
. . . . . 6
|
| 21 | ordir 763 |
. . . . . 6
| |
| 22 | 20, 21 | sylibr 132 |
. . . . 5
|
| 23 | 22 | ord 675 |
. . . 4
|
| 24 | 1, 23 | mpi 15 |
. . 3
|
| 25 | 24 | 3expia 1140 |
. 2
|
| 26 | suceq 4157 |
. 2
| |
| 27 | 25, 26 | impbid1 140 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-dif 2975 df-un 2977 df-sn 3404 df-pr 3405 df-suc 4126 |
| This theorem is referenced by: suc11 4301 peano4 4338 frecsuclem3 6013 |
| Copyright terms: Public domain | W3C validator |