| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovg | Unicode version | ||
| Description: The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| ovg.1 |
|
| ovg.2 |
|
| ovg.3 |
|
| ovg.4 |
|
| ovg.5 |
|
| Ref | Expression |
|---|---|
| ovg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5535 |
. . . . 5
| |
| 2 | ovg.5 |
. . . . . 6
| |
| 3 | 2 | fveq1i 5199 |
. . . . 5
|
| 4 | 1, 3 | eqtri 2101 |
. . . 4
|
| 5 | 4 | eqeq1i 2088 |
. . 3
|
| 6 | eqeq2 2090 |
. . . . . . . . . 10
| |
| 7 | opeq2 3571 |
. . . . . . . . . . 11
| |
| 8 | 7 | eleq1d 2147 |
. . . . . . . . . 10
|
| 9 | 6, 8 | bibi12d 233 |
. . . . . . . . 9
|
| 10 | 9 | imbi2d 228 |
. . . . . . . 8
|
| 11 | ovg.4 |
. . . . . . . . . . . 12
| |
| 12 | 11 | ex 113 |
. . . . . . . . . . 11
|
| 13 | 12 | alrimivv 1796 |
. . . . . . . . . 10
|
| 14 | fnoprabg 5622 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . . 9
|
| 16 | eleq1 2141 |
. . . . . . . . . . . 12
| |
| 17 | 16 | anbi1d 452 |
. . . . . . . . . . 11
|
| 18 | eleq1 2141 |
. . . . . . . . . . . 12
| |
| 19 | 18 | anbi2d 451 |
. . . . . . . . . . 11
|
| 20 | 17, 19 | opelopabg 4023 |
. . . . . . . . . 10
|
| 21 | 20 | ibir 175 |
. . . . . . . . 9
|
| 22 | fnopfvb 5236 |
. . . . . . . . 9
| |
| 23 | 15, 21, 22 | syl2an 283 |
. . . . . . . 8
|
| 24 | 10, 23 | vtoclg 2658 |
. . . . . . 7
|
| 25 | 24 | com12 30 |
. . . . . 6
|
| 26 | 25 | exp32 357 |
. . . . 5
|
| 27 | 26 | 3imp2 1153 |
. . . 4
|
| 28 | ovg.1 |
. . . . . . 7
| |
| 29 | 17, 28 | anbi12d 456 |
. . . . . 6
|
| 30 | ovg.2 |
. . . . . . 7
| |
| 31 | 19, 30 | anbi12d 456 |
. . . . . 6
|
| 32 | ovg.3 |
. . . . . . 7
| |
| 33 | 32 | anbi2d 451 |
. . . . . 6
|
| 34 | 29, 31, 33 | eloprabg 5612 |
. . . . 5
|
| 35 | 34 | adantl 271 |
. . . 4
|
| 36 | 27, 35 | bitrd 186 |
. . 3
|
| 37 | 5, 36 | syl5bb 190 |
. 2
|
| 38 | biidd 170 |
. . . . 5
| |
| 39 | 38 | bianabs 575 |
. . . 4
|
| 40 | 39 | 3adant3 958 |
. . 3
|
| 41 | 40 | adantl 271 |
. 2
|
| 42 | 37, 41 | bitrd 186 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 df-ov 5535 df-oprab 5536 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |