ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pr2ne Unicode version

Theorem pr2ne 6461
Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
Assertion
Ref Expression
pr2ne  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  2o  <->  A  =/=  B ) )

Proof of Theorem pr2ne
StepHypRef Expression
1 preq2 3470 . . . . 5  |-  ( B  =  A  ->  { A ,  B }  =  { A ,  A }
)
21eqcoms 2084 . . . 4  |-  ( A  =  B  ->  { A ,  B }  =  { A ,  A }
)
3 enpr1g 6301 . . . . . 6  |-  ( A  e.  C  ->  { A ,  A }  ~~  1o )
43adantr 270 . . . . 5  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A ,  A }  ~~  1o )
5 prexg 3966 . . . . . . 7  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A ,  B }  e.  _V )
6 eqeng 6269 . . . . . . 7  |-  ( { A ,  B }  e.  _V  ->  ( { A ,  B }  =  { A ,  A }  ->  { A ,  B }  ~~  { A ,  A } ) )
75, 6syl 14 . . . . . 6  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  =  { A ,  A }  ->  { A ,  B }  ~~  { A ,  A } ) )
8 entr 6287 . . . . . . . . 9  |-  ( ( { A ,  B }  ~~  { A ,  A }  /\  { A ,  A }  ~~  1o )  ->  { A ,  B }  ~~  1o )
9 1nen2 6347 . . . . . . . . . . 11  |-  -.  1o  ~~  2o
10 ensym 6284 . . . . . . . . . . . 12  |-  ( { A ,  B }  ~~  1o  ->  1o  ~~  { A ,  B }
)
11 entr 6287 . . . . . . . . . . . . 13  |-  ( ( 1o  ~~  { A ,  B }  /\  { A ,  B }  ~~  2o )  ->  1o  ~~  2o )
1211ex 113 . . . . . . . . . . . 12  |-  ( 1o 
~~  { A ,  B }  ->  ( { A ,  B }  ~~  2o  ->  1o  ~~  2o ) )
1310, 12syl 14 . . . . . . . . . . 11  |-  ( { A ,  B }  ~~  1o  ->  ( { A ,  B }  ~~  2o  ->  1o  ~~  2o ) )
149, 13mtoi 622 . . . . . . . . . 10  |-  ( { A ,  B }  ~~  1o  ->  -.  { A ,  B }  ~~  2o )
1514a1d 22 . . . . . . . . 9  |-  ( { A ,  B }  ~~  1o  ->  ( ( A  e.  C  /\  B  e.  D )  ->  -.  { A ,  B }  ~~  2o ) )
168, 15syl 14 . . . . . . . 8  |-  ( ( { A ,  B }  ~~  { A ,  A }  /\  { A ,  A }  ~~  1o )  ->  ( ( A  e.  C  /\  B  e.  D )  ->  -.  { A ,  B }  ~~  2o ) )
1716ex 113 . . . . . . 7  |-  ( { A ,  B }  ~~  { A ,  A }  ->  ( { A ,  A }  ~~  1o  ->  ( ( A  e.  C  /\  B  e.  D )  ->  -.  { A ,  B }  ~~  2o ) ) )
1817com3r 78 . . . . . 6  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  { A ,  A }  ->  ( { A ,  A }  ~~  1o  ->  -.  { A ,  B }  ~~  2o ) ) )
197, 18syld 44 . . . . 5  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  =  { A ,  A }  ->  ( { A ,  A }  ~~  1o  ->  -. 
{ A ,  B }  ~~  2o ) ) )
204, 19mpid 41 . . . 4  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  =  { A ,  A }  ->  -.  { A ,  B }  ~~  2o ) )
212, 20syl5 32 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  =  B  ->  -.  { A ,  B }  ~~  2o ) )
2221necon2ad 2302 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  2o  ->  A  =/=  B ) )
23 pr2nelem 6460 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  A  =/=  B )  ->  { A ,  B }  ~~  2o )
24233expia 1140 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  =/=  B  ->  { A ,  B }  ~~  2o ) )
2522, 24impbid 127 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  2o  <->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433    =/= wne 2245   _Vcvv 2601   {cpr 3399   class class class wbr 3785   1oc1o 6017   2oc2o 6018    ~~ cen 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245
This theorem is referenced by:  isprm2lem  10498
  Copyright terms: Public domain W3C validator