ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm2lem Unicode version

Theorem isprm2lem 10498
Description: Lemma for isprm2 10499. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Distinct variable group:    P, n

Proof of Theorem isprm2lem
StepHypRef Expression
1 simplr 496 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  =/=  1
)
21necomd 2331 . . . 4  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  =/=  P
)
3 simpr 108 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  { n  e.  NN  |  n  ||  P }  ~~  2o )
4 nnz 8370 . . . . . . . 8  |-  ( P  e.  NN  ->  P  e.  ZZ )
5 1dvds 10209 . . . . . . . 8  |-  ( P  e.  ZZ  ->  1  ||  P )
64, 5syl 14 . . . . . . 7  |-  ( P  e.  NN  ->  1  ||  P )
76ad2antrr 471 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  ||  P
)
8 1nn 8050 . . . . . . 7  |-  1  e.  NN
9 breq1 3788 . . . . . . . 8  |-  ( n  =  1  ->  (
n  ||  P  <->  1  ||  P ) )
109elrab3 2750 . . . . . . 7  |-  ( 1  e.  NN  ->  (
1  e.  { n  e.  NN  |  n  ||  P }  <->  1  ||  P
) )
118, 10ax-mp 7 . . . . . 6  |-  ( 1  e.  { n  e.  NN  |  n  ||  P }  <->  1  ||  P
)
127, 11sylibr 132 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  e.  {
n  e.  NN  |  n  ||  P } )
13 iddvds 10208 . . . . . . . 8  |-  ( P  e.  ZZ  ->  P  ||  P )
144, 13syl 14 . . . . . . 7  |-  ( P  e.  NN  ->  P  ||  P )
1514ad2antrr 471 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  ||  P
)
16 breq1 3788 . . . . . . . 8  |-  ( n  =  P  ->  (
n  ||  P  <->  P  ||  P
) )
1716elrab3 2750 . . . . . . 7  |-  ( P  e.  NN  ->  ( P  e.  { n  e.  NN  |  n  ||  P }  <->  P  ||  P ) )
1817ad2antrr 471 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  ( P  e. 
{ n  e.  NN  |  n  ||  P }  <->  P 
||  P ) )
1915, 18mpbird 165 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  e.  {
n  e.  NN  |  n  ||  P } )
20 en2eqpr 6380 . . . . 5  |-  ( ( { n  e.  NN  |  n  ||  P }  ~~  2o  /\  1  e. 
{ n  e.  NN  |  n  ||  P }  /\  P  e.  { n  e.  NN  |  n  ||  P } )  ->  (
1  =/=  P  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
213, 12, 19, 20syl3anc 1169 . . . 4  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  ( 1  =/= 
P  ->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
222, 21mpd 13 . . 3  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
)
2322ex 113 . 2  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
24 necom 2329 . . . 4  |-  ( 1  =/=  P  <->  P  =/=  1 )
25 pr2ne 6461 . . . . . 6  |-  ( ( 1  e.  NN  /\  P  e.  NN )  ->  ( { 1 ,  P }  ~~  2o  <->  1  =/=  P ) )
268, 25mpan 414 . . . . 5  |-  ( P  e.  NN  ->  ( { 1 ,  P }  ~~  2o  <->  1  =/=  P ) )
2726biimpar 291 . . . 4  |-  ( ( P  e.  NN  /\  1  =/=  P )  ->  { 1 ,  P }  ~~  2o )
2824, 27sylan2br 282 . . 3  |-  ( ( P  e.  NN  /\  P  =/=  1 )  ->  { 1 ,  P }  ~~  2o )
29 breq1 3788 . . 3  |-  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P }  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { 1 ,  P }  ~~  2o ) )
3028, 29syl5ibrcom 155 . 2  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }  ->  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
3123, 30impbid 127 1  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433    =/= wne 2245   {crab 2352   {cpr 3399   class class class wbr 3785   2oc2o 6018    ~~ cen 6242   1c1 6982   NNcn 8039   ZZcz 8351    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-z 8352  df-dvds 10196
This theorem is referenced by:  isprm2  10499
  Copyright terms: Public domain W3C validator