ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqlu Unicode version

Theorem preqlu 6662
Description: Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
preqlu  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <-> 
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )

Proof of Theorem preqlu
StepHypRef Expression
1 npsspw 6661 . . . . 5  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 2995 . . . 4  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 1st2nd2 5821 . . . 4  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
42, 3syl 14 . . 3  |-  ( A  e.  P.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
51sseli 2995 . . . 4  |-  ( B  e.  P.  ->  B  e.  ( ~P Q.  X.  ~P Q. ) )
6 1st2nd2 5821 . . . 4  |-  ( B  e.  ( ~P Q.  X.  ~P Q. )  ->  B  =  <. ( 1st `  B ) ,  ( 2nd `  B )
>. )
75, 6syl 14 . . 3  |-  ( B  e.  P.  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
84, 7eqeqan12d 2096 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. ) )
9 xp1st 5812 . . . . 5  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  e.  ~P Q. )
102, 9syl 14 . . . 4  |-  ( A  e.  P.  ->  ( 1st `  A )  e. 
~P Q. )
11 xp2nd 5813 . . . . 5  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  e.  ~P Q. )
122, 11syl 14 . . . 4  |-  ( A  e.  P.  ->  ( 2nd `  A )  e. 
~P Q. )
13 opthg 3993 . . . 4  |-  ( ( ( 1st `  A
)  e.  ~P Q.  /\  ( 2nd `  A
)  e.  ~P Q. )  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
1410, 12, 13syl2anc 403 . . 3  |-  ( A  e.  P.  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
1514adantr 270 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
168, 15bitrd 186 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <-> 
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   ~Pcpw 3382   <.cop 3401    X. cxp 4361   ` cfv 4922   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470   P.cnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fv 4930  df-1st 5787  df-2nd 5788  df-inp 6656
This theorem is referenced by:  genpassg  6716  addnqpr  6751  mulnqpr  6767  distrprg  6778  1idpr  6782  ltexpri  6803  addcanprg  6806  recexprlemex  6827  aptipr  6831
  Copyright terms: Public domain W3C validator