ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseu Unicode version

Theorem pw2dvdseu 10546
Description: A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
pw2dvdseu  |-  ( N  e.  NN  ->  E! m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) )
Distinct variable group:    m, N

Proof of Theorem pw2dvdseu
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pw2dvds 10544 . 2  |-  ( N  e.  NN  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
2 simpll 495 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  N  e.  NN )
3 simplrl 501 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  e.  NN0 )
4 simplrr 502 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  x  e.  NN0 )
5 simprll 503 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  ( 2 ^ m )  ||  N
)
6 simprrr 506 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  -.  ( 2 ^ ( x  + 
1 ) )  ||  N )
72, 3, 4, 5, 6pw2dvdseulemle 10545 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  <_  x
)
8 simprrl 505 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  ( 2 ^ x )  ||  N
)
9 simprlr 504 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )
102, 4, 3, 8, 9pw2dvdseulemle 10545 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  x  <_  m
)
113nn0red 8342 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  e.  RR )
124nn0red 8342 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  x  e.  RR )
1311, 12letri3d 7226 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  ( m  =  x  <->  ( m  <_  x  /\  x  <_  m
) ) )
147, 10, 13mpbir2and 885 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  =  x )
1514ex 113 . . . 4  |-  ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  ->  ( (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  /\  ( (
2 ^ x ) 
||  N  /\  -.  ( 2 ^ (
x  +  1 ) )  ||  N ) )  ->  m  =  x ) )
1615ralrimivva 2443 . . 3  |-  ( N  e.  NN  ->  A. m  e.  NN0  A. x  e. 
NN0  ( ( ( ( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) )  ->  m  =  x )
)
17 oveq2 5540 . . . . . 6  |-  ( m  =  x  ->  (
2 ^ m )  =  ( 2 ^ x ) )
1817breq1d 3795 . . . . 5  |-  ( m  =  x  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ x )  ||  N ) )
19 oveq1 5539 . . . . . . . 8  |-  ( m  =  x  ->  (
m  +  1 )  =  ( x  + 
1 ) )
2019oveq2d 5548 . . . . . . 7  |-  ( m  =  x  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( x  +  1 ) ) )
2120breq1d 3795 . . . . . 6  |-  ( m  =  x  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( x  + 
1 ) )  ||  N ) )
2221notbid 624 . . . . 5  |-  ( m  =  x  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( x  +  1 ) ) 
||  N ) )
2318, 22anbi12d 456 . . . 4  |-  ( m  =  x  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )
2423rmo4 2785 . . 3  |-  ( E* m  e.  NN0  (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  <->  A. m  e.  NN0  A. x  e.  NN0  (
( ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  /\  (
( 2 ^ x
)  ||  N  /\  -.  ( 2 ^ (
x  +  1 ) )  ||  N ) )  ->  m  =  x ) )
2516, 24sylibr 132 . 2  |-  ( N  e.  NN  ->  E* m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) )
26 reu5 2566 . 2  |-  ( E! m  e.  NN0  (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  <-> 
( E. m  e. 
NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  /\  E* m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) ) )
271, 25, 26sylanbrc 408 1  |-  ( N  e.  NN  ->  E! m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    e. wcel 1433   A.wral 2348   E.wrex 2349   E!wreu 2350   E*wrmo 2351   class class class wbr 3785  (class class class)co 5532   1c1 6982    + caddc 6984    <_ cle 7154   NNcn 8039   2c2 8089   NN0cn0 8288   ^cexp 9475    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-dvds 10196
This theorem is referenced by:  oddpwdclemxy  10547  oddpwdclemdvds  10548  oddpwdclemndvds  10549  oddpwdclemodd  10550  oddpwdclemdc  10551  oddpwdc  10552
  Copyright terms: Public domain W3C validator