ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseulemle Unicode version

Theorem pw2dvdseulemle 10545
Description: Lemma for pw2dvdseu 10546. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
pw2dvdseulemle.n  |-  ( ph  ->  N  e.  NN )
pw2dvdseulemle.a  |-  ( ph  ->  A  e.  NN0 )
pw2dvdseulemle.b  |-  ( ph  ->  B  e.  NN0 )
pw2dvdseulemle.2a  |-  ( ph  ->  ( 2 ^ A
)  ||  N )
pw2dvdseulemle.n2b  |-  ( ph  ->  -.  ( 2 ^ ( B  +  1 ) )  ||  N
)
Assertion
Ref Expression
pw2dvdseulemle  |-  ( ph  ->  A  <_  B )

Proof of Theorem pw2dvdseulemle
StepHypRef Expression
1 pw2dvdseulemle.a . . 3  |-  ( ph  ->  A  e.  NN0 )
21nn0red 8342 . 2  |-  ( ph  ->  A  e.  RR )
3 pw2dvdseulemle.b . . 3  |-  ( ph  ->  B  e.  NN0 )
43nn0red 8342 . 2  |-  ( ph  ->  B  e.  RR )
5 pw2dvdseulemle.n2b . . 3  |-  ( ph  ->  -.  ( 2 ^ ( B  +  1 ) )  ||  N
)
6 2cnd 8112 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  2  e.  CC )
73adantr 270 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  B  e.  NN0 )
8 peano2nn0 8328 . . . . . . . 8  |-  ( B  e.  NN0  ->  ( B  +  1 )  e. 
NN0 )
97, 8syl 14 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  ( B  +  1 )  e. 
NN0 )
101adantr 270 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  A  e.  NN0 )
11 simpr 108 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  B  <  A )
12 nn0ltp1le 8413 . . . . . . . . 9  |-  ( ( B  e.  NN0  /\  A  e.  NN0 )  -> 
( B  <  A  <->  ( B  +  1 )  <_  A ) )
137, 10, 12syl2anc 403 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  ( B  <  A  <->  ( B  + 
1 )  <_  A
) )
1411, 13mpbid 145 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  ( B  +  1 )  <_  A )
15 nn0sub2 8421 . . . . . . 7  |-  ( ( ( B  +  1 )  e.  NN0  /\  A  e.  NN0  /\  ( B  +  1 )  <_  A )  -> 
( A  -  ( B  +  1 ) )  e.  NN0 )
169, 10, 14, 15syl3anc 1169 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( A  -  ( B  + 
1 ) )  e. 
NN0 )
176, 16, 9expaddd 9607 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( ( B  +  1 )  +  ( A  -  ( B  +  1 ) ) ) )  =  ( ( 2 ^ ( B  +  1 ) )  x.  (
2 ^ ( A  -  ( B  + 
1 ) ) ) ) )
189nn0cnd 8343 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  ( B  +  1 )  e.  CC )
1910nn0cnd 8343 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  A  e.  CC )
2018, 19pncan3d 7422 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  ( ( B  +  1 )  +  ( A  -  ( B  +  1
) ) )  =  A )
2120oveq2d 5548 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( ( B  +  1 )  +  ( A  -  ( B  +  1 ) ) ) )  =  ( 2 ^ A
) )
22 pw2dvdseulemle.2a . . . . . . 7  |-  ( ph  ->  ( 2 ^ A
)  ||  N )
2322adantr 270 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ A )  ||  N )
2421, 23eqbrtrd 3805 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( ( B  +  1 )  +  ( A  -  ( B  +  1 ) ) ) )  ||  N )
2517, 24eqbrtrrd 3807 . . . 4  |-  ( (
ph  /\  B  <  A )  ->  ( (
2 ^ ( B  +  1 ) )  x.  ( 2 ^ ( A  -  ( B  +  1 ) ) ) )  ||  N )
26 2nn 8193 . . . . . . . 8  |-  2  e.  NN
2726a1i 9 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  2  e.  NN )
2827, 9nnexpcld 9627 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( B  + 
1 ) )  e.  NN )
2928nnzd 8468 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( B  + 
1 ) )  e.  ZZ )
3027, 16nnexpcld 9627 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( A  -  ( B  +  1
) ) )  e.  NN )
3130nnzd 8468 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( A  -  ( B  +  1
) ) )  e.  ZZ )
32 pw2dvdseulemle.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
3332adantr 270 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  N  e.  NN )
3433nnzd 8468 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  N  e.  ZZ )
35 muldvds1 10220 . . . . 5  |-  ( ( ( 2 ^ ( B  +  1 ) )  e.  ZZ  /\  ( 2 ^ ( A  -  ( B  +  1 ) ) )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( 2 ^ ( B  + 
1 ) )  x.  ( 2 ^ ( A  -  ( B  +  1 ) ) ) )  ||  N  ->  ( 2 ^ ( B  +  1 ) )  ||  N ) )
3629, 31, 34, 35syl3anc 1169 . . . 4  |-  ( (
ph  /\  B  <  A )  ->  ( (
( 2 ^ ( B  +  1 ) )  x.  ( 2 ^ ( A  -  ( B  +  1
) ) ) ) 
||  N  ->  (
2 ^ ( B  +  1 ) ) 
||  N ) )
3725, 36mpd 13 . . 3  |-  ( (
ph  /\  B  <  A )  ->  ( 2 ^ ( B  + 
1 ) )  ||  N )
385, 37mtand 623 . 2  |-  ( ph  ->  -.  B  <  A
)
392, 4, 38nltled 7230 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   1c1 6982    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154    - cmin 7279   NNcn 8039   2c2 8089   NN0cn0 8288   ZZcz 8351   ^cexp 9475    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476  df-dvds 10196
This theorem is referenced by:  pw2dvdseu  10546
  Copyright terms: Public domain W3C validator