| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > qdencn | Unicode version | ||
| Description: The set of complex
numbers whose real and imaginary parts are rational
is dense in the complex plane. This is a two dimensional analogue to
qdenre 10088 (and also would hold for |
| Ref | Expression |
|---|---|
| qdencn.q |
|
| Ref | Expression |
|---|---|
| qdencn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 107 |
. . . 4
| |
| 2 | 1 | recld 9825 |
. . 3
|
| 3 | simpr 108 |
. . . 4
| |
| 4 | 3 | rphalfcld 8786 |
. . 3
|
| 5 | qdenre 10088 |
. . 3
| |
| 6 | 2, 4, 5 | syl2anc 403 |
. 2
|
| 7 | simpll 495 |
. . . . 5
| |
| 8 | 7 | imcld 9826 |
. . . 4
|
| 9 | 4 | adantr 270 |
. . . 4
|
| 10 | qdenre 10088 |
. . . 4
| |
| 11 | 8, 9, 10 | syl2anc 403 |
. . 3
|
| 12 | qcn 8719 |
. . . . . . . 8
| |
| 13 | 12 | ad2antrl 473 |
. . . . . . 7
|
| 14 | 13 | adantr 270 |
. . . . . 6
|
| 15 | ax-icn 7071 |
. . . . . . . 8
| |
| 16 | 15 | a1i 9 |
. . . . . . 7
|
| 17 | qcn 8719 |
. . . . . . . 8
| |
| 18 | 17 | ad2antrl 473 |
. . . . . . 7
|
| 19 | 16, 18 | mulcld 7139 |
. . . . . 6
|
| 20 | 14, 19 | addcld 7138 |
. . . . 5
|
| 21 | qre 8710 |
. . . . . . . . . 10
| |
| 22 | 21 | ad2antrl 473 |
. . . . . . . . 9
|
| 23 | 22 | adantr 270 |
. . . . . . . 8
|
| 24 | qre 8710 |
. . . . . . . . 9
| |
| 25 | 24 | ad2antrl 473 |
. . . . . . . 8
|
| 26 | 23, 25 | crred 9863 |
. . . . . . 7
|
| 27 | simplrl 501 |
. . . . . . 7
| |
| 28 | 26, 27 | eqeltrd 2155 |
. . . . . 6
|
| 29 | 23, 25 | crimd 9864 |
. . . . . . 7
|
| 30 | simprl 497 |
. . . . . . 7
| |
| 31 | 29, 30 | eqeltrd 2155 |
. . . . . 6
|
| 32 | 28, 31 | jca 300 |
. . . . 5
|
| 33 | fveq2 5198 |
. . . . . . . 8
| |
| 34 | 33 | eleq1d 2147 |
. . . . . . 7
|
| 35 | fveq2 5198 |
. . . . . . . 8
| |
| 36 | 35 | eleq1d 2147 |
. . . . . . 7
|
| 37 | 34, 36 | anbi12d 456 |
. . . . . 6
|
| 38 | qdencn.q |
. . . . . 6
| |
| 39 | 37, 38 | elrab2 2751 |
. . . . 5
|
| 40 | 20, 32, 39 | sylanbrc 408 |
. . . 4
|
| 41 | 7 | adantr 270 |
. . . . . . 7
|
| 42 | 20, 41 | subcld 7419 |
. . . . . 6
|
| 43 | 42 | abscld 10067 |
. . . . 5
|
| 44 | 2 | ad2antrr 471 |
. . . . . . . . 9
|
| 45 | 44 | recnd 7147 |
. . . . . . . 8
|
| 46 | 14, 45 | subcld 7419 |
. . . . . . 7
|
| 47 | 46 | abscld 10067 |
. . . . . 6
|
| 48 | 8 | adantr 270 |
. . . . . . . . 9
|
| 49 | 48 | recnd 7147 |
. . . . . . . 8
|
| 50 | 18, 49 | subcld 7419 |
. . . . . . 7
|
| 51 | 50 | abscld 10067 |
. . . . . 6
|
| 52 | 47, 51 | readdcld 7148 |
. . . . 5
|
| 53 | 3 | ad2antrr 471 |
. . . . . 6
|
| 54 | 53 | rpred 8773 |
. . . . 5
|
| 55 | 1 | replimd 9828 |
. . . . . . . . . . 11
|
| 56 | 55 | oveq2d 5548 |
. . . . . . . . . 10
|
| 57 | 56 | ad2antrr 471 |
. . . . . . . . 9
|
| 58 | 16, 49 | mulcld 7139 |
. . . . . . . . . 10
|
| 59 | 14, 19, 45, 58 | addsub4d 7466 |
. . . . . . . . 9
|
| 60 | 57, 59 | eqtrd 2113 |
. . . . . . . 8
|
| 61 | 60 | fveq2d 5202 |
. . . . . . 7
|
| 62 | 19, 58 | subcld 7419 |
. . . . . . . 8
|
| 63 | 46, 62 | abstrid 10082 |
. . . . . . 7
|
| 64 | 61, 63 | eqbrtrd 3805 |
. . . . . 6
|
| 65 | 16, 50 | absmuld 10080 |
. . . . . . . 8
|
| 66 | 16, 18, 49 | subdid 7518 |
. . . . . . . . 9
|
| 67 | 66 | fveq2d 5202 |
. . . . . . . 8
|
| 68 | absi 9945 |
. . . . . . . . . 10
| |
| 69 | 68 | oveq1i 5542 |
. . . . . . . . 9
|
| 70 | 51 | recnd 7147 |
. . . . . . . . . 10
|
| 71 | 70 | mulid2d 7137 |
. . . . . . . . 9
|
| 72 | 69, 71 | syl5eq 2125 |
. . . . . . . 8
|
| 73 | 65, 67, 72 | 3eqtr3d 2121 |
. . . . . . 7
|
| 74 | 73 | oveq2d 5548 |
. . . . . 6
|
| 75 | 64, 74 | breqtrd 3809 |
. . . . 5
|
| 76 | simplrr 502 |
. . . . . 6
| |
| 77 | simprr 498 |
. . . . . 6
| |
| 78 | 47, 51, 54, 76, 77 | lt2halvesd 8278 |
. . . . 5
|
| 79 | 43, 52, 54, 75, 78 | lelttrd 7234 |
. . . 4
|
| 80 | oveq1 5539 |
. . . . . . 7
| |
| 81 | 80 | fveq2d 5202 |
. . . . . 6
|
| 82 | 81 | breq1d 3795 |
. . . . 5
|
| 83 | 82 | rspcev 2701 |
. . . 4
|
| 84 | 40, 79, 83 | syl2anc 403 |
. . 3
|
| 85 | 11, 84 | rexlimddv 2481 |
. 2
|
| 86 | 6, 85 | rexlimddv 2481 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-q 8705 df-rp 8735 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |