| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgivallem | Unicode version | ||
| Description: Value of the recursive definition generator. Lemma for rdgival 5992 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rdgivallem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-irdg 5980 |
. . . 4
| |
| 2 | rdgruledefgg 5985 |
. . . . 5
| |
| 3 | 2 | alrimiv 1795 |
. . . 4
|
| 4 | 1, 3 | tfri2d 5973 |
. . 3
|
| 5 | 4 | 3impa 1133 |
. 2
|
| 6 | eqidd 2082 |
. . 3
| |
| 7 | dmeq 4553 |
. . . . . 6
| |
| 8 | onss 4237 |
. . . . . . . . 9
| |
| 9 | 8 | 3ad2ant3 961 |
. . . . . . . 8
|
| 10 | rdgifnon 5989 |
. . . . . . . . . 10
| |
| 11 | fndm 5018 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | syl 14 |
. . . . . . . . 9
|
| 13 | 12 | 3adant3 958 |
. . . . . . . 8
|
| 14 | 9, 13 | sseqtr4d 3036 |
. . . . . . 7
|
| 15 | ssdmres 4651 |
. . . . . . 7
| |
| 16 | 14, 15 | sylib 120 |
. . . . . 6
|
| 17 | 7, 16 | sylan9eqr 2135 |
. . . . 5
|
| 18 | fveq1 5197 |
. . . . . . 7
| |
| 19 | 18 | fveq2d 5202 |
. . . . . 6
|
| 20 | 19 | adantl 271 |
. . . . 5
|
| 21 | 17, 20 | iuneq12d 3702 |
. . . 4
|
| 22 | 21 | uneq2d 3126 |
. . 3
|
| 23 | rdgfun 5983 |
. . . . 5
| |
| 24 | resfunexg 5403 |
. . . . 5
| |
| 25 | 23, 24 | mpan 414 |
. . . 4
|
| 26 | 25 | 3ad2ant3 961 |
. . 3
|
| 27 | simpr 108 |
. . . . . 6
| |
| 28 | vex 2604 |
. . . . . . . . . 10
| |
| 29 | fvexg 5214 |
. . . . . . . . . 10
| |
| 30 | 25, 28, 29 | sylancl 404 |
. . . . . . . . 9
|
| 31 | 30 | ralrimivw 2435 |
. . . . . . . 8
|
| 32 | 31 | adantl 271 |
. . . . . . 7
|
| 33 | funfvex 5212 |
. . . . . . . . . . 11
| |
| 34 | 33 | funfni 5019 |
. . . . . . . . . 10
|
| 35 | 34 | ex 113 |
. . . . . . . . 9
|
| 36 | 35 | ralimdv 2430 |
. . . . . . . 8
|
| 37 | 36 | adantr 270 |
. . . . . . 7
|
| 38 | 32, 37 | mpd 13 |
. . . . . 6
|
| 39 | iunexg 5766 |
. . . . . 6
| |
| 40 | 27, 38, 39 | syl2anc 403 |
. . . . 5
|
| 41 | 40 | 3adant2 957 |
. . . 4
|
| 42 | unexg 4196 |
. . . . . 6
| |
| 43 | 42 | ex 113 |
. . . . 5
|
| 44 | 43 | 3ad2ant2 960 |
. . . 4
|
| 45 | 41, 44 | mpd 13 |
. . 3
|
| 46 | 6, 22, 26, 45 | fvmptd 5274 |
. 2
|
| 47 | 5, 46 | eqtrd 2113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-recs 5943 df-irdg 5980 |
| This theorem is referenced by: rdgival 5992 rdgon 5996 |
| Copyright terms: Public domain | W3C validator |