![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfvex | Unicode version |
Description: The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
funfvex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 4930 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | funfveu 5208 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | euiotaex 4903 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl 14 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | syl5eqel 2165 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 |
This theorem is referenced by: fnbrfvb 5235 fvelrnb 5242 funimass4 5245 fvelimab 5250 fniinfv 5252 funfvdm 5257 dmfco 5262 fvco2 5263 eqfnfv 5286 fndmdif 5293 fndmin 5295 fvimacnvi 5302 fvimacnv 5303 funconstss 5306 fniniseg 5308 fniniseg2 5310 fnniniseg2 5311 rexsupp 5312 fvelrn 5319 rexrn 5325 ralrn 5326 dff3im 5333 fmptco 5351 fsn2 5358 fnressn 5370 resfunexg 5403 eufnfv 5410 funfvima3 5413 rexima 5415 ralima 5416 fniunfv 5422 elunirn 5426 dff13 5428 foeqcnvco 5450 f1eqcocnv 5451 isocnv2 5472 isoini 5477 f1oiso 5485 fnovex 5558 suppssof1 5748 offveqb 5750 1stexg 5814 2ndexg 5815 smoiso 5940 rdgtfr 5984 rdgruledefgg 5985 rdgivallem 5991 frectfr 6008 frecrdg 6015 freccl 6016 en1 6302 fundmen 6309 fnfi 6388 ordiso2 6446 climshft2 10145 |
Copyright terms: Public domain | W3C validator |