| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgon | Unicode version | ||
| Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) |
| Ref | Expression |
|---|---|
| rdgon.1 |
|
| rdgon.2 |
|
| rdgon.3 |
|
| Ref | Expression |
|---|---|
| rdgon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5198 |
. . . . 5
| |
| 2 | 1 | eleq1d 2147 |
. . . 4
|
| 3 | 2 | imbi2d 228 |
. . 3
|
| 4 | fveq2 5198 |
. . . . 5
| |
| 5 | 4 | eleq1d 2147 |
. . . 4
|
| 6 | 5 | imbi2d 228 |
. . 3
|
| 7 | r19.21v 2438 |
. . . 4
| |
| 8 | rdgon.2 |
. . . . . . . . 9
| |
| 9 | fvres 5219 |
. . . . . . . . . . . . . 14
| |
| 10 | 9 | eleq1d 2147 |
. . . . . . . . . . . . 13
|
| 11 | 10 | adantl 271 |
. . . . . . . . . . . 12
|
| 12 | rdgon.3 |
. . . . . . . . . . . . . . 15
| |
| 13 | fveq2 5198 |
. . . . . . . . . . . . . . . . 17
| |
| 14 | 13 | eleq1d 2147 |
. . . . . . . . . . . . . . . 16
|
| 15 | 14 | cbvralv 2577 |
. . . . . . . . . . . . . . 15
|
| 16 | 12, 15 | sylib 120 |
. . . . . . . . . . . . . 14
|
| 17 | fveq2 5198 |
. . . . . . . . . . . . . . . 16
| |
| 18 | 17 | eleq1d 2147 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | rspcv 2697 |
. . . . . . . . . . . . . 14
|
| 20 | 16, 19 | syl5com 29 |
. . . . . . . . . . . . 13
|
| 21 | 20 | adantr 270 |
. . . . . . . . . . . 12
|
| 22 | 11, 21 | sylbird 168 |
. . . . . . . . . . 11
|
| 23 | 22 | ralimdva 2429 |
. . . . . . . . . 10
|
| 24 | vex 2604 |
. . . . . . . . . . 11
| |
| 25 | iunon 5922 |
. . . . . . . . . . 11
| |
| 26 | 24, 25 | mpan 414 |
. . . . . . . . . 10
|
| 27 | 23, 26 | syl6 33 |
. . . . . . . . 9
|
| 28 | onun2 4234 |
. . . . . . . . 9
| |
| 29 | 8, 27, 28 | syl6an 1363 |
. . . . . . . 8
|
| 30 | 29 | adantr 270 |
. . . . . . 7
|
| 31 | rdgon.1 |
. . . . . . . . . 10
| |
| 32 | 31, 8 | jca 300 |
. . . . . . . . 9
|
| 33 | rdgivallem 5991 |
. . . . . . . . . 10
| |
| 34 | 33 | 3expa 1138 |
. . . . . . . . 9
|
| 35 | 32, 34 | sylan 277 |
. . . . . . . 8
|
| 36 | 35 | eleq1d 2147 |
. . . . . . 7
|
| 37 | 30, 36 | sylibrd 167 |
. . . . . 6
|
| 38 | 37 | expcom 114 |
. . . . 5
|
| 39 | 38 | a2d 26 |
. . . 4
|
| 40 | 7, 39 | syl5bi 150 |
. . 3
|
| 41 | 3, 6, 40 | tfis3 4327 |
. 2
|
| 42 | 41 | impcom 123 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-recs 5943 df-irdg 5980 |
| This theorem is referenced by: oacl 6063 omcl 6064 oeicl 6065 |
| Copyright terms: Public domain | W3C validator |