ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon Unicode version

Theorem rdgon 5996
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.)
Hypotheses
Ref Expression
rdgon.1  |-  ( ph  ->  F  Fn  _V )
rdgon.2  |-  ( ph  ->  A  e.  On )
rdgon.3  |-  ( ph  ->  A. x  e.  On  ( F `  x )  e.  On )
Assertion
Ref Expression
rdgon  |-  ( (
ph  /\  B  e.  On )  ->  ( rec ( F ,  A
) `  B )  e.  On )
Distinct variable groups:    x, A    x, F    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem rdgon
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5198 . . . . 5  |-  ( z  =  x  ->  ( rec ( F ,  A
) `  z )  =  ( rec ( F ,  A ) `  x ) )
21eleq1d 2147 . . . 4  |-  ( z  =  x  ->  (
( rec ( F ,  A ) `  z )  e.  On  <->  ( rec ( F ,  A ) `  x
)  e.  On ) )
32imbi2d 228 . . 3  |-  ( z  =  x  ->  (
( ph  ->  ( rec ( F ,  A
) `  z )  e.  On )  <->  ( ph  ->  ( rec ( F ,  A ) `  x )  e.  On ) ) )
4 fveq2 5198 . . . . 5  |-  ( z  =  B  ->  ( rec ( F ,  A
) `  z )  =  ( rec ( F ,  A ) `  B ) )
54eleq1d 2147 . . . 4  |-  ( z  =  B  ->  (
( rec ( F ,  A ) `  z )  e.  On  <->  ( rec ( F ,  A ) `  B
)  e.  On ) )
65imbi2d 228 . . 3  |-  ( z  =  B  ->  (
( ph  ->  ( rec ( F ,  A
) `  z )  e.  On )  <->  ( ph  ->  ( rec ( F ,  A ) `  B )  e.  On ) ) )
7 r19.21v 2438 . . . 4  |-  ( A. x  e.  z  ( ph  ->  ( rec ( F ,  A ) `  x )  e.  On ) 
<->  ( ph  ->  A. x  e.  z  ( rec ( F ,  A ) `
 x )  e.  On ) )
8 rdgon.2 . . . . . . . . 9  |-  ( ph  ->  A  e.  On )
9 fvres 5219 . . . . . . . . . . . . . 14  |-  ( x  e.  z  ->  (
( rec ( F ,  A )  |`  z ) `  x
)  =  ( rec ( F ,  A
) `  x )
)
109eleq1d 2147 . . . . . . . . . . . . 13  |-  ( x  e.  z  ->  (
( ( rec ( F ,  A )  |`  z ) `  x
)  e.  On  <->  ( rec ( F ,  A ) `
 x )  e.  On ) )
1110adantl 271 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  z )  ->  (
( ( rec ( F ,  A )  |`  z ) `  x
)  e.  On  <->  ( rec ( F ,  A ) `
 x )  e.  On ) )
12 rdgon.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  On  ( F `  x )  e.  On )
13 fveq2 5198 . . . . . . . . . . . . . . . . 17  |-  ( x  =  w  ->  ( F `  x )  =  ( F `  w ) )
1413eleq1d 2147 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  (
( F `  x
)  e.  On  <->  ( F `  w )  e.  On ) )
1514cbvralv 2577 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  On  ( F `  x )  e.  On  <->  A. w  e.  On  ( F `  w )  e.  On )
1612, 15sylib 120 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. w  e.  On  ( F `  w )  e.  On )
17 fveq2 5198 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( ( rec ( F ,  A
)  |`  z ) `  x )  ->  ( F `  w )  =  ( F `  ( ( rec ( F ,  A )  |`  z ) `  x
) ) )
1817eleq1d 2147 . . . . . . . . . . . . . . 15  |-  ( w  =  ( ( rec ( F ,  A
)  |`  z ) `  x )  ->  (
( F `  w
)  e.  On  <->  ( F `  ( ( rec ( F ,  A )  |`  z ) `  x
) )  e.  On ) )
1918rspcv 2697 . . . . . . . . . . . . . 14  |-  ( ( ( rec ( F ,  A )  |`  z ) `  x
)  e.  On  ->  ( A. w  e.  On  ( F `  w )  e.  On  ->  ( F `  ( ( rec ( F ,  A
)  |`  z ) `  x ) )  e.  On ) )
2016, 19syl5com 29 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( rec ( F ,  A
)  |`  z ) `  x )  e.  On  ->  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) )  e.  On ) )
2120adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  z )  ->  (
( ( rec ( F ,  A )  |`  z ) `  x
)  e.  On  ->  ( F `  ( ( rec ( F ,  A )  |`  z
) `  x )
)  e.  On ) )
2211, 21sylbird 168 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  z )  ->  (
( rec ( F ,  A ) `  x )  e.  On  ->  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) )  e.  On ) )
2322ralimdva 2429 . . . . . . . . . 10  |-  ( ph  ->  ( A. x  e.  z  ( rec ( F ,  A ) `  x )  e.  On  ->  A. x  e.  z  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) )  e.  On ) )
24 vex 2604 . . . . . . . . . . 11  |-  z  e. 
_V
25 iunon 5922 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  A. x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z
) `  x )
)  e.  On )  ->  U_ x  e.  z  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) )  e.  On )
2624, 25mpan 414 . . . . . . . . . 10  |-  ( A. x  e.  z  ( F `  ( ( rec ( F ,  A
)  |`  z ) `  x ) )  e.  On  ->  U_ x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z ) `  x
) )  e.  On )
2723, 26syl6 33 . . . . . . . . 9  |-  ( ph  ->  ( A. x  e.  z  ( rec ( F ,  A ) `  x )  e.  On  ->  U_ x  e.  z  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) )  e.  On ) )
28 onun2 4234 . . . . . . . . 9  |-  ( ( A  e.  On  /\  U_ x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z
) `  x )
)  e.  On )  ->  ( A  u.  U_ x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z
) `  x )
) )  e.  On )
298, 27, 28syl6an 1363 . . . . . . . 8  |-  ( ph  ->  ( A. x  e.  z  ( rec ( F ,  A ) `  x )  e.  On  ->  ( A  u.  U_ x  e.  z  ( F `  ( ( rec ( F ,  A
)  |`  z ) `  x ) ) )  e.  On ) )
3029adantr 270 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  ( A. x  e.  z  ( rec ( F ,  A
) `  x )  e.  On  ->  ( A  u.  U_ x  e.  z  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) ) )  e.  On ) )
31 rdgon.1 . . . . . . . . . 10  |-  ( ph  ->  F  Fn  _V )
3231, 8jca 300 . . . . . . . . 9  |-  ( ph  ->  ( F  Fn  _V  /\  A  e.  On ) )
33 rdgivallem 5991 . . . . . . . . . 10  |-  ( ( F  Fn  _V  /\  A  e.  On  /\  z  e.  On )  ->  ( rec ( F ,  A
) `  z )  =  ( A  u.  U_ x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z
) `  x )
) ) )
34333expa 1138 . . . . . . . . 9  |-  ( ( ( F  Fn  _V  /\  A  e.  On )  /\  z  e.  On )  ->  ( rec ( F ,  A ) `  z )  =  ( A  u.  U_ x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z ) `  x
) ) ) )
3532, 34sylan 277 . . . . . . . 8  |-  ( (
ph  /\  z  e.  On )  ->  ( rec ( F ,  A
) `  z )  =  ( A  u.  U_ x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z
) `  x )
) ) )
3635eleq1d 2147 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  ( ( rec ( F ,  A ) `  z
)  e.  On  <->  ( A  u.  U_ x  e.  z  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) ) )  e.  On ) )
3730, 36sylibrd 167 . . . . . 6  |-  ( (
ph  /\  z  e.  On )  ->  ( A. x  e.  z  ( rec ( F ,  A
) `  x )  e.  On  ->  ( rec ( F ,  A ) `
 z )  e.  On ) )
3837expcom 114 . . . . 5  |-  ( z  e.  On  ->  ( ph  ->  ( A. x  e.  z  ( rec ( F ,  A ) `
 x )  e.  On  ->  ( rec ( F ,  A ) `
 z )  e.  On ) ) )
3938a2d 26 . . . 4  |-  ( z  e.  On  ->  (
( ph  ->  A. x  e.  z  ( rec ( F ,  A ) `
 x )  e.  On )  ->  ( ph  ->  ( rec ( F ,  A ) `  z )  e.  On ) ) )
407, 39syl5bi 150 . . 3  |-  ( z  e.  On  ->  ( A. x  e.  z 
( ph  ->  ( rec ( F ,  A
) `  x )  e.  On )  ->  ( ph  ->  ( rec ( F ,  A ) `  z )  e.  On ) ) )
413, 6, 40tfis3 4327 . 2  |-  ( B  e.  On  ->  ( ph  ->  ( rec ( F ,  A ) `  B )  e.  On ) )
4241impcom 123 1  |-  ( (
ph  /\  B  e.  On )  ->  ( rec ( F ,  A
) `  B )  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   _Vcvv 2601    u. cun 2971   U_ciun 3678   Oncon0 4118    |` cres 4365    Fn wfn 4917   ` cfv 4922   reccrdg 5979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943  df-irdg 5980
This theorem is referenced by:  oacl  6063  omcl  6064  oeicl  6065
  Copyright terms: Public domain W3C validator