| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reg2exmidlema | Unicode version | ||
| Description: Lemma for reg2exmid 4279. If |
| Ref | Expression |
|---|---|
| regexmidlemm.a |
|
| Ref | Expression |
|---|---|
| reg2exmidlema |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 496 |
. . . . . . 7
| |
| 2 | sseq1 3020 |
. . . . . . . . 9
| |
| 3 | 2 | ralbidv 2368 |
. . . . . . . 8
|
| 4 | 3 | adantl 271 |
. . . . . . 7
|
| 5 | 1, 4 | mpbid 145 |
. . . . . 6
|
| 6 | 0ex 3905 |
. . . . . . . 8
| |
| 7 | 6 | snss 3516 |
. . . . . . 7
|
| 8 | 7 | ralbii 2372 |
. . . . . 6
|
| 9 | 5, 8 | sylibr 132 |
. . . . 5
|
| 10 | noel 3255 |
. . . . . 6
| |
| 11 | eqid 2081 |
. . . . . . . . . . . 12
| |
| 12 | 11 | jctl 307 |
. . . . . . . . . . 11
|
| 13 | 12 | olcd 685 |
. . . . . . . . . 10
|
| 14 | 6 | prid1 3498 |
. . . . . . . . . 10
|
| 15 | 13, 14 | jctil 305 |
. . . . . . . . 9
|
| 16 | eqeq1 2087 |
. . . . . . . . . . 11
| |
| 17 | eqeq1 2087 |
. . . . . . . . . . . 12
| |
| 18 | 17 | anbi1d 452 |
. . . . . . . . . . 11
|
| 19 | 16, 18 | orbi12d 739 |
. . . . . . . . . 10
|
| 20 | regexmidlemm.a |
. . . . . . . . . 10
| |
| 21 | 19, 20 | elrab2 2751 |
. . . . . . . . 9
|
| 22 | 15, 21 | sylibr 132 |
. . . . . . . 8
|
| 23 | eleq2 2142 |
. . . . . . . . 9
| |
| 24 | 23 | rspcv 2697 |
. . . . . . . 8
|
| 25 | 22, 24 | syl 14 |
. . . . . . 7
|
| 26 | 25 | com12 30 |
. . . . . 6
|
| 27 | 10, 26 | mtoi 622 |
. . . . 5
|
| 28 | 9, 27 | syl 14 |
. . . 4
|
| 29 | 28 | olcd 685 |
. . 3
|
| 30 | simprr 498 |
. . . 4
| |
| 31 | 30 | orcd 684 |
. . 3
|
| 32 | eqeq1 2087 |
. . . . . . 7
| |
| 33 | eqeq1 2087 |
. . . . . . . 8
| |
| 34 | 33 | anbi1d 452 |
. . . . . . 7
|
| 35 | 32, 34 | orbi12d 739 |
. . . . . 6
|
| 36 | 35, 20 | elrab2 2751 |
. . . . 5
|
| 37 | 36 | simprbi 269 |
. . . 4
|
| 38 | 37 | adantr 270 |
. . 3
|
| 39 | 29, 31, 38 | mpjaodan 744 |
. 2
|
| 40 | 39 | rexlimiva 2472 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-nul 3904 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: reg2exmid 4279 reg3exmid 4322 |
| Copyright terms: Public domain | W3C validator |