| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > regexmidlem1 | Unicode version | ||
| Description: Lemma for regexmid 4278. If |
| Ref | Expression |
|---|---|
| regexmidlemm.a |
|
| Ref | Expression |
|---|---|
| regexmidlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2087 |
. . . . . . 7
| |
| 2 | eqeq1 2087 |
. . . . . . . 8
| |
| 3 | 2 | anbi1d 452 |
. . . . . . 7
|
| 4 | 1, 3 | orbi12d 739 |
. . . . . 6
|
| 5 | regexmidlemm.a |
. . . . . 6
| |
| 6 | 4, 5 | elrab2 2751 |
. . . . 5
|
| 7 | 6 | simprbi 269 |
. . . 4
|
| 8 | 0ex 3905 |
. . . . . . . . 9
| |
| 9 | 8 | snid 3425 |
. . . . . . . 8
|
| 10 | eleq2 2142 |
. . . . . . . 8
| |
| 11 | 9, 10 | mpbiri 166 |
. . . . . . 7
|
| 12 | eleq1 2141 |
. . . . . . . . 9
| |
| 13 | eleq1 2141 |
. . . . . . . . . 10
| |
| 14 | 13 | notbid 624 |
. . . . . . . . 9
|
| 15 | 12, 14 | imbi12d 232 |
. . . . . . . 8
|
| 16 | 8, 15 | spcv 2691 |
. . . . . . 7
|
| 17 | 11, 16 | syl5com 29 |
. . . . . 6
|
| 18 | 8 | prid1 3498 |
. . . . . . . . . 10
|
| 19 | eqeq1 2087 |
. . . . . . . . . . . 12
| |
| 20 | eqeq1 2087 |
. . . . . . . . . . . . 13
| |
| 21 | 20 | anbi1d 452 |
. . . . . . . . . . . 12
|
| 22 | 19, 21 | orbi12d 739 |
. . . . . . . . . . 11
|
| 23 | 22, 5 | elrab2 2751 |
. . . . . . . . . 10
|
| 24 | 18, 23 | mpbiran 881 |
. . . . . . . . 9
|
| 25 | pm2.46 690 |
. . . . . . . . 9
| |
| 26 | 24, 25 | sylnbi 635 |
. . . . . . . 8
|
| 27 | eqid 2081 |
. . . . . . . . 9
| |
| 28 | 27 | biantrur 297 |
. . . . . . . 8
|
| 29 | 26, 28 | sylnibr 634 |
. . . . . . 7
|
| 30 | 29 | olcd 685 |
. . . . . 6
|
| 31 | 17, 30 | syl6 33 |
. . . . 5
|
| 32 | orc 665 |
. . . . . . 7
| |
| 33 | 32 | adantl 271 |
. . . . . 6
|
| 34 | 33 | a1d 22 |
. . . . 5
|
| 35 | 31, 34 | jaoi 668 |
. . . 4
|
| 36 | 7, 35 | syl 14 |
. . 3
|
| 37 | 36 | imp 122 |
. 2
|
| 38 | 37 | exlimiv 1529 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-nul 3904 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-nul 3252 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: regexmid 4278 nnregexmid 4360 |
| Copyright terms: Public domain | W3C validator |