| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reg2exmid | Unicode version | ||
| Description: If any inhabited set has
a minimal element (when expressed by |
| Ref | Expression |
|---|---|
| reg2exmid.1 |
|
| Ref | Expression |
|---|---|
| reg2exmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2081 |
. . . 4
| |
| 2 | 1 | regexmidlemm 4275 |
. . 3
|
| 3 | reg2exmid.1 |
. . . 4
| |
| 4 | pp0ex 3960 |
. . . . . 6
| |
| 5 | 4 | rabex 3922 |
. . . . 5
|
| 6 | eleq2 2142 |
. . . . . . 7
| |
| 7 | 6 | exbidv 1746 |
. . . . . 6
|
| 8 | raleq 2549 |
. . . . . . 7
| |
| 9 | 8 | rexeqbi1dv 2558 |
. . . . . 6
|
| 10 | 7, 9 | imbi12d 232 |
. . . . 5
|
| 11 | 5, 10 | spcv 2691 |
. . . 4
|
| 12 | 3, 11 | ax-mp 7 |
. . 3
|
| 13 | 2, 12 | ax-mp 7 |
. 2
|
| 14 | 1 | reg2exmidlema 4277 |
. 2
|
| 15 | 13, 14 | ax-mp 7 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |