ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldm2 Unicode version

Theorem releldm2 5831
Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
releldm2  |-  ( Rel 
A  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem releldm2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2610 . . 3  |-  ( B  e.  dom  A  ->  B  e.  _V )
21anim2i 334 . 2  |-  ( ( Rel  A  /\  B  e.  dom  A )  -> 
( Rel  A  /\  B  e.  _V )
)
3 id 19 . . . . 5  |-  ( ( 1st `  x )  =  B  ->  ( 1st `  x )  =  B )
4 vex 2604 . . . . . 6  |-  x  e. 
_V
5 1stexg 5814 . . . . . 6  |-  ( x  e.  _V  ->  ( 1st `  x )  e. 
_V )
64, 5ax-mp 7 . . . . 5  |-  ( 1st `  x )  e.  _V
73, 6syl6eqelr 2170 . . . 4  |-  ( ( 1st `  x )  =  B  ->  B  e.  _V )
87rexlimivw 2473 . . 3  |-  ( E. x  e.  A  ( 1st `  x )  =  B  ->  B  e.  _V )
98anim2i 334 . 2  |-  ( ( Rel  A  /\  E. x  e.  A  ( 1st `  x )  =  B )  ->  ( Rel  A  /\  B  e. 
_V ) )
10 eldm2g 4549 . . . 4  |-  ( B  e.  _V  ->  ( B  e.  dom  A  <->  E. y <. B ,  y >.  e.  A ) )
1110adantl 271 . . 3  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( B  e.  dom  A  <->  E. y <. B ,  y >.  e.  A ) )
12 df-rel 4370 . . . . . . . . 9  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
13 ssel 2993 . . . . . . . . 9  |-  ( A 
C_  ( _V  X.  _V )  ->  ( x  e.  A  ->  x  e.  ( _V  X.  _V ) ) )
1412, 13sylbi 119 . . . . . . . 8  |-  ( Rel 
A  ->  ( x  e.  A  ->  x  e.  ( _V  X.  _V ) ) )
1514imp 122 . . . . . . 7  |-  ( ( Rel  A  /\  x  e.  A )  ->  x  e.  ( _V  X.  _V ) )
16 op1steq 5825 . . . . . . 7  |-  ( x  e.  ( _V  X.  _V )  ->  ( ( 1st `  x )  =  B  <->  E. y  x  =  <. B , 
y >. ) )
1715, 16syl 14 . . . . . 6  |-  ( ( Rel  A  /\  x  e.  A )  ->  (
( 1st `  x
)  =  B  <->  E. y  x  =  <. B , 
y >. ) )
1817rexbidva 2365 . . . . 5  |-  ( Rel 
A  ->  ( E. x  e.  A  ( 1st `  x )  =  B  <->  E. x  e.  A  E. y  x  =  <. B ,  y >.
) )
1918adantr 270 . . . 4  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( E. x  e.  A  ( 1st `  x )  =  B  <->  E. x  e.  A  E. y  x  =  <. B , 
y >. ) )
20 rexcom4 2622 . . . . 5  |-  ( E. x  e.  A  E. y  x  =  <. B ,  y >.  <->  E. y E. x  e.  A  x  =  <. B , 
y >. )
21 risset 2394 . . . . . 6  |-  ( <. B ,  y >.  e.  A  <->  E. x  e.  A  x  =  <. B , 
y >. )
2221exbii 1536 . . . . 5  |-  ( E. y <. B ,  y
>.  e.  A  <->  E. y E. x  e.  A  x  =  <. B , 
y >. )
2320, 22bitr4i 185 . . . 4  |-  ( E. x  e.  A  E. y  x  =  <. B ,  y >.  <->  E. y <. B ,  y >.  e.  A )
2419, 23syl6bb 194 . . 3  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( E. x  e.  A  ( 1st `  x )  =  B  <->  E. y <. B ,  y >.  e.  A ) )
2511, 24bitr4d 189 . 2  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
262, 9, 25pm5.21nd 858 1  |-  ( Rel 
A  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349   _Vcvv 2601    C_ wss 2973   <.cop 3401    X. cxp 4361   dom cdm 4363   Rel wrel 4368   ` cfv 4922   1stc1st 5785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fo 4928  df-fv 4930  df-1st 5787  df-2nd 5788
This theorem is referenced by:  reldm  5832
  Copyright terms: Public domain W3C validator