ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemp1rp Unicode version

Theorem resqrexlemp1rp 9892
Description: Lemma for resqrex 9912. Applying the recursion rule yields a positive real (expressed in a way that will help apply iseqf 9444 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemp1rp  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) C )  e.  RR+ )
Distinct variable groups:    y, A, z    ph, y, z    y, B, z    y, C, z
Allowed substitution hints:    F( y, z)

Proof of Theorem resqrexlemp1rp
StepHypRef Expression
1 eqidd 2082 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  (
y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) )  =  ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) )
2 id 19 . . . . . 6  |-  ( y  =  B  ->  y  =  B )
3 oveq2 5540 . . . . . 6  |-  ( y  =  B  ->  ( A  /  y )  =  ( A  /  B
) )
42, 3oveq12d 5550 . . . . 5  |-  ( y  =  B  ->  (
y  +  ( A  /  y ) )  =  ( B  +  ( A  /  B
) ) )
54oveq1d 5547 . . . 4  |-  ( y  =  B  ->  (
( y  +  ( A  /  y ) )  /  2 )  =  ( ( B  +  ( A  /  B ) )  / 
2 ) )
65ad2antrl 473 . . 3  |-  ( ( ( ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  /\  ( y  =  B  /\  z  =  C ) )  ->  (
( y  +  ( A  /  y ) )  /  2 )  =  ( ( B  +  ( A  /  B ) )  / 
2 ) )
7 simprl 497 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  B  e.  RR+ )
8 simprr 498 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  C  e.  RR+ )
97rpred 8773 . . . . 5  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  B  e.  RR )
10 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
1110adantr 270 . . . . . 6  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  A  e.  RR )
1211, 7rerpdivcld 8805 . . . . 5  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( A  /  B )  e.  RR )
139, 12readdcld 7148 . . . 4  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B  +  ( A  /  B ) )  e.  RR )
1413rehalfcld 8277 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  (
( B  +  ( A  /  B ) )  /  2 )  e.  RR )
151, 6, 7, 8, 14ovmpt2d 5648 . 2  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) C )  =  ( ( B  +  ( A  /  B ) )  / 
2 ) )
167rpgt0d 8776 . . . . 5  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  0  <  B )
17 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
1817adantr 270 . . . . . 6  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  0  <_  A )
1911, 7, 18divge0d 8814 . . . . 5  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  0  <_  ( A  /  B
) )
20 addgtge0 7554 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  /  B
)  e.  RR )  /\  ( 0  < 
B  /\  0  <_  ( A  /  B ) ) )  ->  0  <  ( B  +  ( A  /  B ) ) )
219, 12, 16, 19, 20syl22anc 1170 . . . 4  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  0  <  ( B  +  ( A  /  B ) ) )
2213, 21elrpd 8771 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B  +  ( A  /  B ) )  e.  RR+ )
2322rphalfcld 8786 . 2  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  (
( B  +  ( A  /  B ) )  /  2 )  e.  RR+ )
2415, 23eqeltrd 2155 1  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) C )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   {csn 3398   class class class wbr 3785    X. cxp 4361  (class class class)co 5532    |-> cmpt2 5534   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154    / cdiv 7760   NNcn 8039   2c2 8089   RR+crp 8734    seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-2 8098  df-rp 8735
This theorem is referenced by:  resqrexlemf  9893  resqrexlemf1  9894  resqrexlemfp1  9895
  Copyright terms: Public domain W3C validator