ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanre Unicode version

Theorem rexanre 10106
Description: Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
Assertion
Ref Expression
rexanre  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) ) )
Distinct variable groups:    j, k, A    ph, j    ps, j
Allowed substitution hints:    ph( k)    ps( k)

Proof of Theorem rexanre
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 107 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ph )
21imim2i 12 . . . . 5  |-  ( ( j  <_  k  ->  (
ph  /\  ps )
)  ->  ( j  <_  k  ->  ph ) )
32ralimi 2426 . . . 4  |-  ( A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  A. k  e.  A  ( j  <_  k  ->  ph ) )
43reximi 2458 . . 3  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph ) )
5 simpr 108 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ps )
65imim2i 12 . . . . 5  |-  ( ( j  <_  k  ->  (
ph  /\  ps )
)  ->  ( j  <_  k  ->  ps )
)
76ralimi 2426 . . . 4  |-  ( A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  A. k  e.  A  ( j  <_  k  ->  ps )
)
87reximi 2458 . . 3  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)
94, 8jca 300 . 2  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) )
10 breq1 3788 . . . . . . . 8  |-  ( j  =  x  ->  (
j  <_  k  <->  x  <_  k ) )
1110imbi1d 229 . . . . . . 7  |-  ( j  =  x  ->  (
( j  <_  k  ->  ph )  <->  ( x  <_  k  ->  ph ) ) )
1211ralbidv 2368 . . . . . 6  |-  ( j  =  x  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  <->  A. k  e.  A  ( x  <_  k  ->  ph ) ) )
1312cbvrexv 2578 . . . . 5  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. x  e.  RR  A. k  e.  A  ( x  <_  k  ->  ph ) )
14 breq1 3788 . . . . . . . 8  |-  ( j  =  y  ->  (
j  <_  k  <->  y  <_  k ) )
1514imbi1d 229 . . . . . . 7  |-  ( j  =  y  ->  (
( j  <_  k  ->  ps )  <->  ( y  <_  k  ->  ps )
) )
1615ralbidv 2368 . . . . . 6  |-  ( j  =  y  ->  ( A. k  e.  A  ( j  <_  k  ->  ps )  <->  A. k  e.  A  ( y  <_  k  ->  ps )
) )
1716cbvrexv 2578 . . . . 5  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps )  <->  E. y  e.  RR  A. k  e.  A  ( y  <_  k  ->  ps ) )
1813, 17anbi12i 447 . . . 4  |-  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  <->  ( E. x  e.  RR  A. k  e.  A  ( x  <_ 
k  ->  ph )  /\  E. y  e.  RR  A. k  e.  A  (
y  <_  k  ->  ps ) ) )
19 reeanv 2523 . . . 4  |-  ( E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  <->  ( E. x  e.  RR  A. k  e.  A  ( x  <_ 
k  ->  ph )  /\  E. y  e.  RR  A. k  e.  A  (
y  <_  k  ->  ps ) ) )
2018, 19bitr4i 185 . . 3  |-  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  <->  E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
) )
21 maxcl 10096 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  RR )
2221adantl 271 . . . . 5  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  RR )
23 r19.26 2485 . . . . . 6  |-  ( A. k  e.  A  (
( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  <->  ( A. k  e.  A  (
x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
) )
24 prth 336 . . . . . . . 8  |-  ( ( ( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  ->  (
( x  <_  k  /\  y  <_  k )  ->  ( ph  /\  ps ) ) )
25 simplrl 501 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  x  e.  RR )
26 simplrr 502 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  y  e.  RR )
27 simpl 107 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  A  C_  RR )
2827sselda 2999 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  k  e.  RR )
29 maxleastb 10100 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  k  e.  RR )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  <->  ( x  <_  k  /\  y  <_  k ) ) )
3025, 26, 28, 29syl3anc 1169 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  <->  ( x  <_  k  /\  y  <_  k ) ) )
3130imbi1d 229 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  (
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) )  <-> 
( ( x  <_ 
k  /\  y  <_  k )  ->  ( ph  /\ 
ps ) ) ) )
3224, 31syl5ibr 154 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  (
( ( x  <_ 
k  ->  ph )  /\  ( y  <_  k  ->  ps ) )  -> 
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) ) ) )
3332ralimdva 2429 . . . . . 6  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( A. k  e.  A  (
( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  ->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
3423, 33syl5bir 151 . . . . 5  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
35 breq1 3788 . . . . . . . 8  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( j  <_ 
k  <->  sup ( { x ,  y } ,  RR ,  <  )  <_ 
k ) )
3635imbi1d 229 . . . . . . 7  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( ( j  <_  k  ->  ( ph  /\  ps ) )  <-> 
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) ) ) )
3736ralbidv 2368 . . . . . 6  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( A. k  e.  A  ( j  <_  k  ->  ( ph  /\ 
ps ) )  <->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
3837rspcev 2701 . . . . 5  |-  ( ( sup ( { x ,  y } ,  RR ,  <  )  e.  RR  /\  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) )
3922, 34, 38syl6an 1363 . . . 4  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
4039rexlimdvva 2484 . . 3  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
4120, 40syl5bi 150 . 2  |-  ( A 
C_  RR  ->  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
429, 41impbid2 141 1  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349    C_ wss 2973   {cpr 3399   class class class wbr 3785   supcsup 6395   RRcr 6980    < clt 7153    <_ cle 7154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator