| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssopab2 | Unicode version | ||
| Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.) |
| Ref | Expression |
|---|---|
| ssopab2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1474 |
. . . 4
| |
| 2 | nfa1 1474 |
. . . . . 6
| |
| 3 | sp 1441 |
. . . . . . 7
| |
| 4 | 3 | anim2d 330 |
. . . . . 6
|
| 5 | 2, 4 | eximd 1543 |
. . . . 5
|
| 6 | 5 | sps 1470 |
. . . 4
|
| 7 | 1, 6 | eximd 1543 |
. . 3
|
| 8 | 7 | ss2abdv 3067 |
. 2
|
| 9 | df-opab 3840 |
. 2
| |
| 10 | df-opab 3840 |
. 2
| |
| 11 | 8, 9, 10 | 3sstr4g 3040 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-in 2979 df-ss 2986 df-opab 3840 |
| This theorem is referenced by: ssopab2b 4031 ssopab2i 4032 ssopab2dv 4033 |
| Copyright terms: Public domain | W3C validator |